20 Mar 2024 NP-Complete Graph Problems
Announcement: Set 7 to be released Friday unoming. Q1 will have optional "early hand-in." due Tues 4 pm promise to grade before end of Sp Bra, solution set for entin Set 7 will be released to all (couple of days after latest slipuday deadline) regardless of early Q1 option.
Rest of Pret 7 has usual Thurs might deadline.

Recall.
3SAT: Given Boolean variables x_{1}, \ldots, x_{n} forming literals $x_{1}, \overline{x_{1}}, x_{2}, \overline{x_{2}}, \ldots, x_{n}, \overline{x_{n}}$ and clauses $G_{1},-=C_{m}$ each is disjunction (Boolean OR) of $\leqslant 3$ literals.
\therefore does a truth assignment satisfying all clauses exist?

IND SET. Gen undirected graph G pos. integer k
... does exist set S of k vertices, st every edge has $\leqslant 1$ indpint in S ?

Claim $3 S A T \leqslant \rho$ IND SET
"Given an algorithm That solves IMD SET
we cen make an efficient 35AT algorithm."

Goal. (1) Transform input of 3SAT to input of ND SET.
(2) Transformation runs in poly time. (In fact, will be linear time)
(3) If $3 S A T$ input has o satisfying
troth assignment, the IID SEt

START Here,
Represent constituent units of 3 SAt problem using "gadgets:" (subgraphs) instorce will have a kelement ind set,
(4) If 3SAT input has no satibging assign. the IND SET instance will have no k-element independent set.

$$
C_{1}: x_{1} \vee x_{2} \vee \overline{x_{3}} \quad C_{2}: \overline{x_{1}} \vee \overline{x_{2}} v x_{4}
$$

Ir general, the reduction takes

$$
\begin{aligned}
& \text { Variables } \\
& x_{1}, \ldots, x_{n}
\end{aligned} \quad \begin{aligned}
& \begin{array}{l}
\text { vertices } \\
u_{1}, \ldots, \ldots, u_{n} \\
v_{1}, \ldots, v_{n}
\end{array} \\
& \text { Clauses }
\end{aligned}
$$

edge set: Connect, $\left(u_{j}, v_{j}\right)^{(n)} \quad \forall j \in[n]$

$$
\begin{aligned}
& \begin{array}{r}
\left(w_{i j}, w_{i k}\right) \\
(\leqslant 3 m) \\
\begin{array}{l}
\text { gadget } \\
\text { intent }
\end{array} \\
\text { edges }
\end{array} \\
& \begin{array}{l}
\forall j \neq k \text { sit } \\
x_{j}, x_{k} \text { beth } \\
\text { present in } C_{i} \\
\text { (or } \left.\overline{x_{j}}, \overline{x_{k}}\right)
\end{array} \\
& \left(w_{i j}, u_{j}\right) \text { if } \bar{x}_{j} \text { is in } C_{i} \\
& \left(w_{i}^{\prime}, v_{j}\right) \text { if } x_{j} \text { is in } C_{i}, s 3 m
\end{aligned}
$$

Set target indes st size, k, to be $n+m$.
Running time $O(2 n+3 m+n+6 n)=O(m+n)$.

CLIQUE: Given (undir.) graph G and $k \in \mathbb{N}$
does G have a set of k vertices, S, sit. every two elements of S are connected by an edge?

Vertex Cover: Given G \& k
does G have a set of vertices, S, with k elements, that "covers" every edge? (5 contains at least one inffont of every edge.)

INA SET $\leqslant \rho$ CLIQUE
Given $G=(V, E)$ and k construct $\bar{G}=(V, \bar{E})$ and k.
S is indep st in $G \Longleftrightarrow$
S is clique in G.

