18 Mar 2024 NP Completeness (Intro) today (Mar 18) is the Last Announcement : drop classes. dotte to Some problem Some problem you already you want to solve (A) can solve (B) Input to A Encode SINDA to BY Do To John Solve BAL-NYY TOR-BOS Karp Veduction Output of A & Scoole foutput of BK BAL-NYY TOR-305 0,00,00,00 When I a Kearp reduction from A to B running in plynomial time, we dense that relation as $A_{a} = \sum_{p=1}^{\infty} a_{p} B_{p}$ and interpret this as "if we can save B then we can solve A," or, "A is at least 95 easy to solve as B." Equivalently: IF we cannot solve A (afficiently) then we also cannot relie B (efficiently).

The "root of hardness" (one problem assumed by most prople to be computationally hard) is SAT. ("Boolean satisficility") Giveni variables X, ..., Xn taking [T, F] values. clauses C, , , Cm ench a disjunction of 2 or more literals. Boolean OR ("literal" = "Variable or its repation") e.g. $C_1 = x_2 v \overline{\chi_4} v \chi_5 v \overline{\chi_8} v \chi_9$ Questioni Does there exist a touth assignment For XI,..., Xn that sortisfies every clause $\underbrace{\mathsf{Ex}}_{X_1} \left(\begin{array}{c} X_1 \left(\begin{array}{c} X_2 \right) \\ X_1 \left(\begin{array}{c} X_2 \end{array}\right) \\ X_2 \end{array}\right) \wedge \left(\begin{array}{c} X_2 \\ X_3 \end{array}\right) \wedge \left(\begin{array}{c} X_3 \\ X_3 \end{array}\right) \\ X_2 = T \\ X_3 = F \end{array}$ $(x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2}) \wedge (\overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee \overline{x_3})$ Not $N(x_3 \vee x_1) \wedge (\overline{x_3} \vee \overline{x_1}) \times (\overline{x_1} \vee$ Status of SAT: We derit know any aborthm Easter than $O(a^{n-o(n)})$. Even solving in O(1.99") time would be a major breakthrough. <u>3-SAT:</u> The special case of SAT where each clause has 3 literals. Knowr, SAT Sp 3-SAT Believed. 3-SAT requires $\ge C'$ running time For some C > 1.

INDEPENDENT SET. Given: Groph G (undirected) KEM Question: Does & have a set of k vertices with no edge joining any two of them? (Such a vertex set is called an "independent set".) E_{x_i} G = k = 3 yes G = 2 - 2 - 2 - 2 = 2 = 1 = 3 = 1 = 3Claim: INDEPENDENT SET is at least as hard 3-SAT. 3-SAT Se IND SET "up to 3 SAT Encode > [input to IND SET How can we transform a 3-SAT problem

•	•	•	•	•	•	•	-	Ø	•	•	C	ín		•	.(ý	d	Q	e	d	Ø	at)	•	R	t	•	•	p r	d	te	Ĵ/	ر ۱	•	•	8	- 2	-	t	h	zł		•	•	•	•	•
•	•	•	•	•	•	•	. (50) (r	\mathbf{h}	nø	2 2 2	•	•	+	h	e- e-	•	•	•	Ţ	Ŋ	D	•	5	E	T	•	•		2	Śt	9	~`	Q	2	•	· (אר		فك		•	•	•	•	•
•	•	•	•	•	•						-															•		-															•	•	•		•
•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•		•	•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•				•		•	•	•	•	•	•		•	•		•	•	•		•	•	•	•		•	•	•	•		•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•			•		•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•		•	•	•
	•	•	•		•	•	•		•	•	•	*	•	•	•	•	*	•	*	*	•	•	•	•	*	•	•	*	•	•	•	*	*	*	*	*	*	*	*	*	*	•	•	*	*	*	•
•				•	•	•			•	•		•	•	•			•	•		•						•	•	•	•	•		•		•	•	•		•		•	•	•			•		•