15 March 2024

Plan.

* Baseball Elimination
* Announcements
* Image Segmentation

Baseball Elimination Problem

Teams	Wins	
Hos	90	92
MY	88	89
BAL	86	87
TB	91	91

Games
$($ BOL,$N Y Y)$
$(B O S, T B)$
$(T B, B A L) X$
$(N Y Y, T B) \times$

Baseball Elimination Problem

Teams	Wins	Games
BOS	90	$($ BOS, NYY)
NYY	88	90

Bos?

NYY?

Baseball Elimination Problem
Given: * List of teams $\left\langle t_{0}, \ldots, t_{n}\right\rangle$

* Current standings $\left\langle w_{0}, \ldots, w_{k}\right\rangle$
$w_{i}=$ current $\#$ of wins by t_{i}
* Remaining games $\left\langle g_{1}, \ldots, g_{n}\right\rangle$

$$
g_{j}=\underbrace{\left(t_{i}, t_{k}\right)}
$$

Game g_{j} between t_{i} and t_{k}.
Question: Can to finish with the most wins?

Baseball Elimination Problem
Given: * List of teams $\left\langle t_{0}, \ldots, t_{k}\right\rangle$

* Current standings $\left\langle w_{0}, \ldots, w_{k}\right\rangle$
* Remaining games $\left\langle g_{1}, \ldots, g_{n}\right\rangle$

Question: Can to finish with the most wins?

Observation 0. WLOG assume t_{0} has no move games:

Baseball Elimination Problem
$\begin{array}{rlr}\text { Given: } & \text { List of teams } & \left\langle t_{0}, \ldots, t_{k}\right\rangle \\ & \text { 天 Current standings } & \left\langle w_{0}, \ldots, w_{k}\right\rangle\end{array}$

* Remaining games $\left\langle g_{1}, \ldots, g_{n}\right\rangle$

Question: Can to finish with the most wins?

Observation 0 WLOG assume to has no more games:

* Search through all games involving t_{0}
* Assign t_{0} the win. $\quad\left(i . e . \quad w_{0} \leftarrow w_{0}+1\right)$
* Remove game [Preprocessing falues $O(n)$ time]

Baseball Elimination Problem
Given: * List of teams $\left\langle t_{0}, \ldots, t_{k}\right\rangle$

* Current standings $\left\langle w_{0}, \ldots, w_{k}\right\rangle$
* Remaining games $\left\langle g_{1}, \ldots, g_{n}\right\rangle$

Question: Can to finish with the most wins?

Observation. Every remaining game results in an additional win for some team.

Baseball Elimination Problem
Given: * List of teams $\left\langle t_{0}, \ldots, t_{k}\right\rangle$

* Current standings $\left\langle w_{0}, \ldots, w_{k}\right\rangle$
* Remaining games $\left\langle g_{1}, \ldots, g_{n}\right\rangle$

Question: Can to finish with the most wins?

Observation. Every remaining game results in an additional win for some team.

Can we allocate all of these wins (ie games) such that t_{0} is the leader?

BOS	90	$($ BOS,NYY
NYY	88	$(B O S$, TB $)$
BAL	86	$($ (BB, BAL $)$
TB	91	$($ NYY, TB)

BOS	90
NYY 92	
BAL	88
TB	86
91	

$\frac{\frac{(B O S}{(B O S, F B)}}{(\text { (BB,BAL) }}$| $(N Y Y, T B)$ |
| :--- |

(NYY)
(BAC)

TB

$$
C_{i}=W_{0}-W_{i}
$$

\longleftarrow Max \# of addifional wins s.t. $w_{i}+c_{i} \leq w_{0}$.

Correctness. The max flow in G equals n if and only if t_{0} can finish with the most wins after the remaining n games.

If the max flow is n, there is an "allocation" of wins st.
to finishes in 1 st.
(\Longleftarrow) If the max flow is $<h$ to cannot finish $w /$ the most wins.
(\Rightarrow) Consider a flow f of n units
\triangle Devise an "allocation" of wins to teams as follows.
For each unit of $g_{j} \rightarrow t_{i}$ flow,
Assign 1 additional win to t_{i}

$$
w_{i} \varepsilon w_{i}+1
$$

(\Rightarrow) Consider a flow f of n units
Devise an "allocation" of wins to teams as follows.
For each unit of $g_{j} \rightarrow t_{i}$ flow,
Assign 1 additional win to t_{i}
By capacity constraints team t_{i} is "allocated" at most $c_{i}=w_{0}-w_{i}$ units.
\Rightarrow if team t_{i} wins each gave allocated then $w_{i}+c_{i} \leq w_{0}$.
(\Rightarrow) Consider a flow f of n units
Devise an "allocation" of wins to teams as follows.
For each unit of $g_{j} \rightarrow t_{i}$ flow,
Assign 1 additional win to t_{i}
By capacity constraints team t_{i} is "allocated" at most $c_{i}=w_{0}-w_{i}$ units.
\Rightarrow if team t_{i} wins each gave allocated then $\quad w_{i}+C_{i} \leq w_{0}$.

By construction n units of flow covers all n remaining games

(\Longleftarrow) Suppose max flow $<n$.

\Rightarrow Cannot allocate a win for each game w/o violating team capacity constraints.

So some t_{i} ends with

$$
>w_{i}+c_{i}=w_{0} \text { wins }
$$

Announcements.
HF 6 - Released after lecture

Image Segmentation

Image Segmentation

Segmentation Problem
Given: Pixels in a grid

For each pixel P

$$
\begin{aligned}
& f_{p} \equiv \text { Foreground likelihood } \\
& b_{p} \equiv \text { Background likelihood }
\end{aligned}
$$

Segmentation Problem
Given: Pixels in a grid

For each pixel P
$f_{p} \equiv$ Foreground like tikood
$b_{p} \equiv$ Background likelihood

For each pair of neighboring pixels pi
Spa \equiv Separation penalty
\longrightarrow suffered if p in foreground and q in background (or vice.)

Segmentation Problem
Given: Pixels in a grid For each pixel P
$f_{P} \equiv$ Foreground like tikood
$b_{p} \equiv$ Background likelihood
For each pair of neighboring pixels p, q

$$
S_{p q} \equiv \text { Separation penalty }
$$

Find partition of pixels $(F, B) /$ maximizing

$$
\sum_{p \in F} f_{p}+\sum_{q \in B} b_{q}-\sum_{\substack{p \in F \\ q \in B}} s_{p}
$$

$$
\operatorname{Maximize}_{F, B} \sum_{p \in F} f_{p}+\sum_{q \in B} b_{q}-\sum_{\substack{i \in F \\ q \in B}} s_{p q}
$$

$$
\begin{aligned}
& f_{n}=10 \\
& b_{n}=2
\end{aligned}
$$

7

$$
\begin{aligned}
& f_{w}=0 \\
& b_{w}=5
\end{aligned}
$$

$$
\begin{aligned}
& f_{v}=1 \\
& b_{v}=5
\end{aligned}
$$

$$
\begin{aligned}
& 100 \\
& w=0 \\
& w=5
\end{aligned}
$$

$$
\begin{aligned}
& f_{x}=2 \\
& b_{x}=4
\end{aligned}
$$

Observation Maximizing "Goodness"
Minimizing "Badness"
Goal. Maximize $\sum_{F, B} f_{p}+\sum_{q \in B} b_{q}-\sum_{\substack{\in \in F \\ q=B}} s_{p q}$.

Observation Maximizing "Goodness" II
Minimizing "Badness"
Goal. Maximize $\sum_{F, B} f_{p}+\sum_{q \in B} b_{q}-\sum_{\substack{k \in F \\ q \in B}} S_{p q}$.

$$
\begin{aligned}
& \sum_{v \in \text { Pixels }} f_{v}=\sum_{p \in F} f_{p}+\sum_{q \in B} f_{q} \\
& \sum_{v \in \text { Pixels }} b_{v}=\sum_{p \in F} b_{p}+\sum_{q \in B} b_{q}
\end{aligned}
$$

Observation Maximizing "Goodness" 11
Minimizing "Badness"
Goal. Maximize $\sum_{F \in F} f_{p}+\sum_{q \in B} b_{q}-\sum_{\substack{\notin F \\ q^{e B}}} S_{p q}$.

$$
\begin{aligned}
& \sum_{p \in F} f_{p}=\sum_{v \in \text { Pixels }} f_{v}-\sum_{q \in B} f_{q} \\
& \sum_{q \in B} b_{q}=\sum_{v \in \text { Pixels }} b_{v}-\sum_{p \in F} b_{p}
\end{aligned}
$$

Observation Maximizing "Goodness"
Il
Minimizing "Badness"

Goal.

$$
\begin{aligned}
& \operatorname{Maximize}_{F, B} \sum_{p \in F} f_{p}+\sum_{q \in B} b_{q}-\sum_{\substack{f \in F \\
q \in B}} s_{p q} \\
& \sum_{p \in F} f_{p}=\sum_{v \in P_{i x e l s}} f_{v}-\sum_{q \in B} f_{q} \\
& \sum_{q \in B} b_{q}=\sum_{v \in P^{\prime} \text { well }} b_{v}-\sum_{p \in F} b_{p}
\end{aligned}
$$

Maximize $\sum_{\text {vePixels }}\left(f_{v}+b_{v}\right)-\sum_{q \in B} f_{q}-\sum_{p \in F} b_{p}-\sum_{\substack{p \in F \\ q \in B}} s_{p q}$

Observation. Maximizing "Goodness"
Minimizing "Badness"
Goal. Maximize $\sum_{F, B}\left(f+\right.$ for l $\left._{v \times l s}\right)-\sum_{q \in B} f_{q}-\sum_{p \in F} b_{p}-\sum_{\substack{\in \in F \\ q \in B}} s_{p q}$
No dependence of

$$
(F, B)
$$

Observation "Maximizing "Goodness"
Il
Minimizing "Badness"
Goal. Maximize $\sum_{V, B}\left(f+f_{\text {fuels }}\right)-\sum_{q \in B} f_{q}-\sum_{p \in F} b_{p}-\sum_{\substack{\in F \\ q \in B}} S_{p q}$

$$
\begin{aligned}
& \Rightarrow \underset{F, B}{\operatorname{Maximize}}-\sum_{q \in B} f_{q}-\sum_{p \in F} b_{p}-\sum_{\substack{p \in F \\
q \in B}} s_{p q} \\
& \Longrightarrow \operatorname{Minimize}_{F, B} \sum_{\mathcal{F}_{q \in B}} f_{q}+\sum_{p \in F} b_{p}+\sum_{\substack{p \in F \\
q \in B}} s_{p q}
\end{aligned}
$$

Find a partition of pixels to

$$
\operatorname{Minimize}_{F, B} \sum_{q \in B} f_{q}+\sum_{p \in F} b_{p}+\sum_{\substack{p \in F \\ q \in B}} s_{p q}
$$

Find a partition of pixels to

$$
\operatorname{Minimize}_{F, B} \sum_{q \in B} f_{q}+\sum_{p \in F} b_{p}+\sum_{\substack{p \in F \\ q \in B}} s_{p q}
$$

Find a partition of pixels to

$$
\operatorname{Minimize}_{F, B} \sum_{q \in B} f_{q}+\sum_{p \in F} b_{p}+\sum_{\substack{p \in F \\ q \in B}} s_{p q}
$$

Find a partition of pixels to

$$
\operatorname{Minimize}_{F, B} \sum_{q \in B} f_{q}+\sum_{p \in F} b_{p}+\sum_{\substack{p \in F \\ q \in B}} s_{p q}
$$

Find a partition of pixels to

$$
\operatorname{Minimize}_{F, B} \sum_{q \in B} f_{q}+\sum_{p \in F} b_{p}+\sum_{\substack{p \in F \\ q \in B}} s_{p q}
$$

Which edges are cut?

$$
(s, q)
$$

(p, t)
for $q \in B$
for $p \in F$
(p, q)
for $p \in F, q \in B$.

