13 Marc	h = 2024	• •
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	••••
Plan		••••
	$ \cdot \cdot$	• •
X 	Max Bipartite Matching Problem	• •
	Announcements	••••
	Flow Reductions	
· · · · · · · · ·		· ·
	· · · · · · · · · · · · · · · · · · ·	••••
		• •
· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· ·
· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· ·
	· · · · · · · · · · · · · · · · · · ·	• •

Maximum Match	<u>live</u> ,
Given: Undire	cted Graph $G = (V, E)$
Find . Maxin	num cardinality matching MEE
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
A matching is	s a subset of the edges M
	where no two edges in M share an endpoint
· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·

Maximum Matching. Given: Undirected Graph G = (V, E) Find : Maximum cardinality matching MCE $C_{1} = \frac{1}{2} + \frac{1}{2$ matching is a subset of the edges M where no two edges in M share an endpoint.

Maximum Bipartite Matching. Given: Bipartite Graph G=(U,V,E) Find: Max cardinality matching Bipartite Graph *ව* ට vertices can be partitioned in to UN, V a site i a OF T $\forall (u, v) \in E$ $u \in \mathcal{M}$, $v \in \mathcal{M}$

4, 1 D_ $\widehat{}$ No $M = \int \left(U_1, V_2 \right), \left(U_4, V_3 \right)$ $M = \left\{ \begin{array}{c} (u_{1}, v_{3}) \\ (u_{1}, v_{3}) \\ \end{array} \right\} \left\{ \begin{array}{c} (u_{2}, v_{2}) \\ (u_{3}, v_{1}) \\ \end{array} \right\} \left\{ \begin{array}{c} (u_{3}, v_{1}) \\ \end{array} \right\} \left\{ \begin{array}(u_{3}, v_{1}) \\ \end{array} \right\} \left\{ \left\{ \left\{ \begin{array}(u_{3}, v_{1}) \\ \end{array} \right\} \left\{ \left\{ \left\{ u_{1}, v_{1}\right \right\} \right\} \left\{ \left\{ u_{1}, v_{1}\right \right\} \left\{ \left\{ u_{1}, v_{1}\right \right\} \left\{$ h.)

Algorithm for solving Max Bipartite Matching? Ê)

Reduction to Max Flow 0 Max Bipartite Match (U, V, E) Construct directed graph G For all edges e in G Capacity Ce=1 Return MaxFlow(G', s, t, c)

Reduction to Max Flow S_ Max Bipartite Match (U, V, E) Vertices: UUVUZS, to Construct directed graph G Edges: For all edges e in G * for all uv E E add u->v Capacity Ce=1 * for all re U add $s \rightarrow u$ Return Max Flow (G, s, t, c) * for all VEV add v ->t

Max Bipartite Match (U, V, E) Construct directed graph G For all edges e in G -0-(S)Capacity Ce = 1 Return Max Flow (G, s, t, c) Claim. The max cardinality of a matching in G equals the max flow in G

Max Bipartite Match (U,V,E) Construct divected graph For all edges e in G Capacity Ce = 1 Return MaxFlow (G, s, t, C) Claim. The max cardinality of a matching in G equals the max flow in G Reduction Proof of Correctness (\Rightarrow) If G has a matching M where |M| = k, then G' has a flow f where val(f) = k. If G' has a flow f where val(f) = k, then G has a matching M where |M|=k.

Max Bipartite Match (U, V, E) Construct directed graph For all edges e in G Capacity Ce = 1 Return MaxFlow (G', s, t, c) Claim. The max cardinality of a matching in G equals the max flow in G Reduction Proof of Correctness If G has a matching M where |M| = k, then G' has a flow f where val(f) = k. If G' has a flow f where val(f) = k, then G has a matching M where MI=le.

 (\Rightarrow) max matching in $G \leq \max flow in G'$ Consider some matching Min G Build a flow in G'as: 1 unit of flow - for all $e=(u,v) \in M$. $(\bigcirc) \longrightarrow (U) \longrightarrow (V) \longrightarrow (\bigcirc)$ $f_{Su}=1$ $f_{uv}=1$ $f_{vt}=1$ M = k

(\Rightarrow) max matching in $G \leq \max flow in G'$	•
Consider some matching Min G.	•
Build a flow in G' as: Ronte 1 unit of flow - for all $e=(u,v) \in M$. $f_{sr}=1$ $f_{uv}=1$ $f_{vt}=1$	· · ·
Claim. f is a legal flow in G'. * Capacity	•
* <u>Conservation</u>	•
	•
	•

(\Rightarrow) max matching in $G \leq \max flow in G'$
Consider some matching Min G.
Build a flow in G'as: Route 1 unit of flow
$-f_{ov} all e=(u,v) \in M.$ $(S) \rightarrow (U) \rightarrow (V) \rightarrow (F)$ $f_{su}=1 f_{uv}=1 f_{vt}=1$
Claim. f is a legal flow in G'. By defn. of matching uEU, VEV appear in M
* Capacity Each $(s_{i}v), (v_{i}v), (v_{i}t) \in G'$ $cap = 1.$
Doby 1 unit routed to V.
* Conservation
st-paths of flow in f are vertex-disjoint.
La Each path satisfies conservation, so varion does as well.

 (\Rightarrow) max matching in $G \leq \max flow in G$ Consider some matching M in G Build a flow in G as: Ronte 1 unit of flow - for all $e = (u, v) \in M$. $(f) \rightarrow (h) \rightarrow (h) \rightarrow (f)$ $f_{Su} = 1 \qquad f_{uv} = 1 \qquad f_{vt} = 1$ By construction / disjointness Claim val(f) = |M|.

Max Bipartite Match (U, V, E) Construct directed graph For all edges e in G Capacity Ce = 1 Return MaxFlow (G, s, t, C) Claim. The max cardinality of a matching in G equals the max flow in G Reduction Proof of Correctness If G has a matching M where |M| = k, then G' has a flow f where val(f) = k. If G' has a flow f where val(f) = k, then G has a matching M where |M|=k.

(\in) max matching in $G \ge \max flow in G'$
Consider an integral flow f in G' (wlog)
$f_e \in \mathbb{N}^{n}$
Build a matching $M = Z(u,v) \in U \times V$: $f_{uv} = I J$
Claim Mis a matching in G.
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·

(\Leftarrow) max matching in $G \ge \max flow in G'$
Consider an integral flow f in G' (wlog)
$f_e \in \mathbb{N}$
Build a matching $M = Z(u,v) \in U \times V$: $f_{uv} = 19$
Claim. Mis a matching in G.
* Capacity of (s, u) , (v, t) is 1 for all $u \in U$, $v \in V$.
\implies For each uell, vel at most 1 edge (u, v) has $f_{uv} = 1$

	max matching in G Z max flow in G'
Consid	wan integral flow f in G' (wlog)
· · · · · · · ·	$f_{o} \in \mathbb{N}$
Brild	a matching $M = \overline{Z}(u, v) \in U \times V$: $f_{uv} = 1\overline{\zeta}$
Claim	M = vaQ(f)
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·

 (\Leftarrow) max matching in $G \ge \max flow in G'$ Consider an integral flow f in G' (wlog) $f_e \in \mathbb{N}$ Build a matching $M = \overline{Z}(u, v) \in U \times V$. for = 1 g Claim |M| = val (f)- In G', every unit of s->t flow must pass through U and V - For each unit for uEU, veV M has 1 edge (u, v).

Max Bipartite Match (U, V, E) Construct directed graph For all edges e in G Capacity Ce=1 Return MaxFlow (G, s, t, C) Claim. The max cardinality of a matching in G equals the max flow in G Reduction Proof of Correctness (\Rightarrow) If G has a matching M where |M| = k, then G' has a flow f where val(f) = k. If G' has a flow f where val(f) = k, then G has a matching M where MI=k.

Max Bipartite Match (U,V,E). Construct directed graph G For all edges e in G Capacity Ce = 1 (Ŝ) Return Max Flow (G', s, t, c) Running Time Constructing G ,9 Q Constructing c Running Max Flow?

Max Bipartite Match (U, V, E) Construct directed graph For all edges e in G Capacity Ce=1 Return MaxFlow (G, s, t, C) Running Time Constructing G M + V for in/out edges per vuter .9 Q El to direct each edge in G Constructing c: IEI + [U[+ [V] for each edge Running Max Flow:

Max Bipartite Match (U, V, E). Construct directed graph For all edges e in G Capacity Ce = 1 Return MaxFlow (G, s, t, c) Running Time Constructing G' U + V for in/out edges per vuter .9 Q (E) to direct each edge in G Constructing c E + W + V for each edge Running Max Flow: $T_{MaxFlow}\left(\left|E\right|+\left|\mathcal{U}\right|+\left|\mathcal{V}\right|\right)$ MaxFlow in network w/ Medges. Tmaxflow (m) = time to solve

Max Bipartite Match (U, V, E). Construct directed graph For all edges e in G Capacity Ce = 1 Return MaxFlow (G', s, t, c) Running Time Constructing G' U + VI for in/out edges per vuter .9 Q (E) to direct each edge in G Constructing c IEI + [U[+ [V] for each edge Running Max Flow: $T_{MaxFlow}\left(\left|E\right|+\left|\mathcal{U}\right|+\left|\mathcal{V}\right|\right)$ $T_{maxflow}(m) \leq O(m^{c})$ for any c > 1.

Conclusion. There exists an algorithm such that given a bipartite graph on $M = \Omega(|u|+|v|)$ edges, solves the Maximum matching problem in $O(m + T_{MF}(m))$ fine.

Announcements.
* Final Exam Scheduled
16 May 2024 7pm
No alternate exam (Cornell University Final Exam the only possible exception)
* HWS due tomorrow evening.
* Open Lecture on "Bridging Physics & Computer Science" Understanding Hand Problems, in Rockefeller @ 7:30pm Lenka Zdeborová

•			- - -	e 1	L.	er	1 1		•	0	0	F	•	0		•	r S	Re	20	↓ c	۰ م (è e	•	•	•	•	•	•	fi	- 0v	N		je.)vc	, 6	(¢	M	•	Ŧ	> .	•	+c)	M	ax	F	- 6	لہ
•	•	•	۰ ۲	•			25	Ċ	V) 90	2	•	V	e	d	r C	ر م		Ļ	ų L	, }		•	. -	R			•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	K) \	•	<u>،</u> ۲	•	•	a	2	• •	•	. ()	i U		70		; .	h		Λ	•	•	•	4	h	a-1	- - -	•	•	•	•	•	•	•		•	•	0	•	0 0	•	•	0 0	•	•	•	•
•	•	•	•	•			v e	M	- - -	•	đ	\mathcal{N}		•		N	2.	\mathbf{f}	M	2	Ċ	2 . 2		Ċ	, f		•	۔ • ر	P,	•	V	e	fi	λV	N	S	•	9	•	4	90	n	.	ſ	'n	Sr	ha	М	C	-
•	•	•	•	•		•	•	•	•	•	•		•	•	•	•	•		•					•	•	•	•	•		•	•	•	•	•	•	•			•		•		G	, 	S ₁	ł,	<u>с</u>		•	•
•	•	0	•		•	•	•	0	•	0	•		•	0	•		0			•	0			•	•	•	•	•	•	•	•	•			•	•		•	•	•	•		•	•	•	•	•		•	
•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•			•	•			•	•	•	•	•	•	•		•			•			•	•	•	•	•	•	•	•		•		•	•
*	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•			•	•	•		•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•			•	•			•	•	•	•	÷	•	•		•			•		•		•	•	•	•	•	•		•	•	•	•	•
•	•	•	•	•	0	•	•	•	•	•			•	•	•	•	•			•	•			•	•	•	•	•	•	•		•		•	•		•		•	•	0	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•			•	•			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	0 0	•	0	•	•	0	•	•	•		•	•	•	•	•			•	•	•		•	•	•	•	•	•	•	•	•		•	•		•			•	0	•	•	0	•	•	•	•	•	•
•	•	•	•	•	0	•	•	•	•	0	•		•	•	•	•			•	•		•		•	•	•	•	•	•	•	•	•		•	•		•		•	•	0	•	0 0	•	•	•	•		•	•
•	•	•		•	•	•	•		•	•	•		•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•		•	•	•	•	•	•
•	•	•	•	٠	•		٠	٠	•				•		٠	٠				٠	٠	•		•	٠				٠			•			•					٠	۰	•	٠	۰	•	٠	٠			

Elements of a Reduction from problem P to MaxFler	ب د
* Describe reduction R	•
R is an algorithm that given an instance of P, returns a flow instance X (G,s,t,c)	· · · · · · · · · · · · · · · · · · ·
* Analyze Correctness	•
(G,s,t,c) has a flow if cend X has solution of value K only if (w/ value K)	•
	•
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	•
· · · · · · · · · · · · · · · · · · ·	•
· · · · · · · · · · · · · · · · · · ·	•
	•

Elements of a Reduction from problem P to Max Flow * Describe reduction R Ris an algorithm that given an instance of P, returns a flow instance (G,s,t,c)* Analyze Correctness if and only if (G,s,t,c) has a flow of value K X has solution (w/ value K) and * Analyze Runnice Time and solving flow instance > of reduction R

Baseball Elimination Problem Games eams WINS Kos (Bos, NTY) Bos 90 (Bos, TB) NYY 88 (TB, BAL) 86 BAL (NTT, TB)B >NYY TB wins , then Bos vies, then Bos > - Pry

Baseball Elimination Problem t_{0} , t_{0} , t_{0} , t_{0} * List of teams Given: * Current standings Wi = current # of wins by ti * Remaining games $\langle g_1, \dots, g_n \rangle$ $9_j = (t_i, t_u)$ Game gi between ti and th Question: Can to finish with the most wins?