8 Mar Ford-Fukerson and Max-Flow Min-Cut
For a flow network (G, s, t, c) and a flow, f, and augnerting path $P\left(s-t\right.$ in resilual graph $\left.G_{f}\right)$ define:
(1) "bottleneck capacity" $b(P)=\min _{e \in E(P)}\left\{c_{f}(e)\right\}$ (minimum residual aqpacity on P)
flow $^{\text {now }}$ (2) "augment f using $P "$

Lemma: (1) If G is flow wow, f is a flow, P is awn augmenting path, and f^{\prime} is the result of augmenting f using P, f^{\prime} is a flow,
(2) If $c(e)$ and $f(e)$ are integer valued $\forall e$, then $f^{\prime}(e)$ is also integer valued be.

Ford-Fulkerson
Initialize $f(e)=0$ for al edges E,
Initialize $\quad G=G$
while G_{f} contains an s-t path, P :
$f \leftarrow$ augment f using ρ recalculate G_{f}
Outpent f_{1}

Claim: If we men Ford-Fulkerson on an integer-capacitoted network whoce max flow has value V, it will terminate after at most $\theta(m \vee)$ steps.

Proof. $v(f)$ increases by $b(p) \geqslant 1$ in each iteration Stats at 0 , increases to $\leqslant V$, so while -log iterates $\leq V$ times.

One while-loop iteration must:

* Search G_{f} for st path.

$$
\text { BES } \quad O(m+n)=O(m)
$$

* Find $b(p) \quad O(n)=O(m)$
* Augment $f \quad O(n)=O(m)$
* Recalcerlate $G_{f} \quad O(n)=O(m)$
$O(m)$ work per iteration $\Rightarrow \frac{\partial(m V)}{1}$ running time.
"pseudopolynomial" $O\left(\mathrm{mC}\right.$ where $C=\sum$ e out of $s(e)$
If edge capacities are in $\{1, \ldots, L\}$
then it takes $\log _{2}(u)+1$ bits to write an edge capacity, so input size is $O(m \log U)$ whereas V could be as large as $\frac{n \cdot l}{2}$.

$$
\begin{aligned}
& u, 0 u \\
& (3)=\frac{u}{u}(t) \\
& u>0 \frac{u}{u}
\end{aligned}
$$

V could be exponentially bigger than the input size.

Correctness?
Lemma says augmenting f using P preserves the property " A is a flow." when also terminates, it outputs a flew why maximern flow?

We will certify by finding a corresponding minimum cut.

Def. A cut in a flow network is a partition of the vertex set into A, B such that $s \in A, \quad t \in B \longrightarrow A \cap B=\varnothing$

$$
A \cup B=V(G)
$$

The capacity of a cut is

$$
C(A, B)=\sum_{\substack{e=(a, v) \\ u \in A, v \in B}} c(e)
$$

Define $f^{\text {out }}(A)=\sum_{e=(u, v)} f(e)$

$$
f^{\operatorname{in}}(A)=\sum_{e=(u, v)} f(e)
$$

$\frac{\text { Obs. 1. If } A, B}{\text { and is an st cut }}$
(*) $\begin{aligned} f^{\text {out }(A)-f^{\text {in }}(A)}= & v(f) . \\ & \sum_{v \in A} f^{\text {out }}(v)-f^{\text {in }}(v)^{\text {/low }} \text { cons }\end{aligned}$

Obs 2. \quad font $(A) \leqslant c(A, O)$

$$
\begin{gathered}
f^{\text {in }}(A) \geqslant 0 \\
v(F)=f^{\text {out }}(A)-f^{\text {in }}(A) \leqslant c(A, B)
\end{gathered}
$$

value of every flow
\leq capacity of every cut
$\Longrightarrow V($ max Alow $) \leqslant \operatorname{cop}($ min cut $)$
Mar Flow min Cut Theorem:

$$
v\left(\max f_{l a m}\right)=\operatorname{cop}(\min c u t)
$$

