4 Mar 2024 Network Flow (\$7.1) Annoncements: To be posted very soon... - prelim Solutions - Homewerk 3 grades 10° Car/min SYR, Max rate at 10 car/min 50 car min which cars can get from ItH 10 car/min 100 car/min CoR to eclipse? DRY 10 GP (in cars/min) 0= 1 JTH SY SYR 100 100 D Car/min 50 car 50 10 car/min 50 car min 10 168R 10 10 car/m2 COR 10 car/m?

•	•	• •	•	•	•	1			IT!		50	D- (a	r/mi	DR	1 10	nîr	GP		· · ·			0- JTH	1 60		50	DR	7 10	ni~	5 5 7	· · ·		•	
٠	٠		٠		٠		٠			•	• •	٠				•								٠			• •						
0	•	• •	٠	٠	٠	• •	٠	٠	٠	٠	• •	•	0	• •	٠	٠	• •	•	• •	• •		•	• •	٠		٠	• •	• •		• •	• •	٠	٠
٠	٠	• •	٠	٠	*	• •	٠	٠	٠	•	• •	٠		• •	٠	٠	• •	•	• •	• •		•	• •	٠	• •	٠	• •	• •		• •		٠	
٠	٠	• •	٠		٠	• •	٠	٠		•	• •	•		• •		•	• •	•		·		•		Ha		h	ЛД-х		ade	· ·	F		•
٠		• •	•		•	• •	•	•	٠	•	• •		٠	• •	۰		• •	•	• •			•	•.•								י א ר	٠	•
•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	• •	•	•	• •	• •	• •	• •	Car	(S)	6	Xit	510	5	H	e.	rea	J L	ox.	•	•
٠	•		٠	•	٠	• •		٠		٠	• •		٠	• •			• •	•	• •	• •	· · ·	•			J.		• •		Ĵ	· ·)	٠	•
	•	• •	•	•	•	•	*	•		•	• •	•	0	• •	•	•	• •	•	• •	• •	19e	200		2°	10			<u>`</u>		~ 0		•	•
	÷	• •	•	•	•	• •	•	•	•	•	• •	÷	0	• •	•	•	• •	• •	• •		6	ad	6	le	ها	n	າ	H-	h	ove	<u> </u>	•	•
•	•	• •	0	•	•	• •		•	•	•	• •	•	0	• •	•	•	• •	• •	• •			m	dr.	R	· ·	0	pac	- Hy		60			•
٠	•	• •	٠		٠	• •	٠		٠	•	• •	٠	٠	• •	٠	٠	• •	•	• •	• •			• •	٠	• •	٠		· [·		• •	• •	٠	٠

"network flow" — a class of algo problems induing cending striff around a capacitated network GLOSSAPY. "How network" - an instance of network flow flow" - a solution for a porticular Flav network "more flow" - an optimal solution. A flow network (G, s, t, c) is Def. directed graph G - vertices SZE in V(G) called "source" and "sink" capacities $c(e) \ge 0$ for all $e \in E(G)$ $c(e) \in \mathbb{R}_{\geq 0}$ \cup $\{\infty\}$ Conventions (for convenience, not necessity) no edges into 5 or out of t every vertex belongs to cit least one edge. \implies $|V| \leq 2|E|$, so for example O(|V| + |E|) = O(|E|). Def. A Flow in a flow network & a function f: E-> IR=0 satisfying 1) [conservation] for all v≠s,t $f_{1}^{(1)} (v) = f_{1}^{(1)} (v)$ $f^{in}(v) = \sum_{(u,v)\in E} f(u,v)$ $f^{out}(v) = \sum_{(v,w)\in E} f(v,w)$ 25/ 10

(2) [cquacity] for all eEE(G) $0 \leq f(e) \leq c(e)$ Def. The value of a Flow, f, is $v(f) = f^{out}(s) = f^{in}(t)$ must be equal because of flow conservation A maximum flow in a flow notwork (G, s, t, c) is a from f that attains the maximum value of V(F). Residual capacities and augmenting paths Det. IF G is a flow network and f is a Flow, there is a cesideral graph called & with vertices $V(G_f) = V(G)$ <u>.</u> - edges { (u,v) (u,v) \in E(G) and flu,v) < c(u,v) } "formard edges" V S(v, w) (u,v) EE(G) and F(u,v)>03 "backward edge"

residual copacities " These have Er forward edge C (un) = c(un) - Flux for backned edge $c_{\mathcal{L}}(v,u) =$ flux) augneiting path 5-t path 15 cun path 5070 11 e SYR 100 car/min min 10 Car/min 100 car/min 100 car/min 100 car/min DRY 10 GP min

	•	•	•	•	•	•	•	*	•	*	•	•		•	•	*	•			•		•	•	•		٠	•		•			*	•	•	*	•	•	•		•	*	•	٠	٠	•	*	•
	•	٠	٠	٠		•	٠	٠		٠	٠	•	٠	٠	٠		٠	٠			٠		•		٠	٠		٠	٠			٠		•	•	•	•	٠		•		·	٠	٠	•	•	
•	٠	٠	•	•	•		•	•	•	٠	•		•	•	•	٠	•	۰	٠		٠	•	٠	٠			٠	٠	٠			•	•		•	٠	٠	•	•	•	•	•		٠	٠	٠	•
٠	•	٠	•	•	•		٠	•	•	•	•		•	•	٠	*	•	٠	*		٠	٠	٠	*	•	•	•	٠	٠			•	•		•	•	•	•	•	•	•	•	٠	*	٠	•	•
٠	•			٠		٠	٠		•			٠		۰	•			•		•	•	•	•			•			٠					٠			•			•		*	٠		•		•
	•	•	•	•	•	•	٠	•	•	٠	•	•	٠	•	·		•	•					•	٠	•	•	•		٠		•	٠		•	•	٠	•	•		•	٠	•	٠	•		٠	•
•	•	•	•		•		٠	٠	•	٠	•	•	٠	•	٠	٠	٠	٠	•		٠	•	•	٠	٠	٠		•	•			•			•	٠	•	٠		•	•	٠	٠	•	•	•	•
	•			•		•	•	•	•		•	•	•	•	٠		٠	٠			٠		•			•		•	•			٠		•	•	•	٠	•		•		•	•	•	•	•	•
•	•	•	•	•	•		•	•		•			•		•	•	•	٠	•		٠	•	٠	٠	•	•	•	•	•			•			•	•	•	٠		•	•	•	•	•		•	•
٠	٠	٠	٠	•	•		٠	•	•	•			٠		٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠			•			•	•	٠	٠		•		٠	٠	٠	•	•	•
•	٠	0	•	٠	٠	٠	0	•	٠		٠	٠		٠	•		•	•		•	•	•	•	٠	٠	۰		٠	۰	٠	•	۰	•	٠		٠	•	0	•	•	٠	٠	0		٠		
•	٠	۰	•	٠	•	•	•	*	•	٠	*	•	•	•	٠	+	٠	•	•		٠	•	٠	*	•	٠		•	٠	•		*	•	•	٠	•	•	•		•	*	٠	0	٠	٠	*	•
٠	٠		٠	٠	•	٠	0	٠	٠		٠	٠		٠	•			•		•	•	٠	•		٠	٠		٠		٠	٠	٠	٠	•		٠	•	0	٠	•	٠	٠	0	٠	٠		•
•	٠	0	•	٠	•	٠	0	۰	•	٠	٠	٠		٠	•		•	•		•		•	•	٠	٠	۰		•	۰	٠	•	٠	•	•	•	٠	•		•	•	٠	٠	0	•	٠		•
•	•	٠	•	٠	•	•	٠	*	•		٠	•	٠	٠	•	•	•	٠	•		•	•	•	٠	٠	٠			٠	•	•		•	•	*	٠	•	٠		•	*	٠	٠	٠		*	•
•	•		*	٠								٠			٠		*	٠	•	•		•	•	۰	•	٠		•	٠					٠		•	٠		•	•		٠			•		•
	٠	۰	•	٠	•	•	•	٠	•	٠	٠	•		٠	•		•	•			•		•	•	٠	۰	٠	•	۰	•	•	٠	•	•	٠	٠	•	•	•	•	٠	٠	0	۰	•	٠	•
•	•	•	•	٠	•	•	٠	•	•	٠	•	•	•	•	٠	•	٠	٠	•		٠		•	٠	٠	•	٠	٠	•	•	•	٠	•	•	•	•	•	٠		•	٠	٠	٠	•	•	•	•