March 2024 Analyzing Randomized Median

Plan

* Recall Median Finding Algorithm
* Analysis Tool: Expected Running Tine
* Arvouncéments
* Expected RT Analysis
$k^{\text {th }}$ element (a.k.a. $k^{\text {th }}$ ORDER STATISTIC)
Given: a list L of n distinct integer
Task: Return the $\underbrace{k^{t h} \text { smallest element }}_{s \in L}$

$$
\begin{aligned}
& |\{r \in L: r \leq s\}|=k \\
& |\{t \in L \because t>s\}|=n-k
\end{aligned}
$$

Selection without Sorting
Divide

Conquer
To find $h^{\text {th }}$ elem, consider $l=|L \leq|$ compared to k.

Select (L, k)
Choose pivot $P \in L$

$$
\begin{aligned}
& L \leq \leftarrow\langle i \in L: i \leq p\rangle \\
& L>\leftarrow j \in L: j>p\rangle
\end{aligned}
$$

let $\ell=\mid L \leq 1$
if $l=k$: Return p pivot was $k^{\text {th }}$ elem
if $l>k:$ Return Select $\left(L_{\leq}, k\right)$
else: Return Select $(L>, k-l)$

Theorem For any $\frac{\text { deterministic pivot selection }}{\text { (that does not depend }}$ (that does not depend on L) the worst-case running time of Select is $\Omega\left(n^{2}\right)$.

Idea Use a RANDOM pivot selection.

Basic Randomness Primitives

* Choose random bit $B \in\{0,1\}$ w.p. $1 / 2$
* Given n, choose $Z \in\{1, \ldots, n\}$
uniformly at random

$$
\operatorname{Pr}[Z=i]=\frac{1}{n} \quad \forall i \in\{1, \ldots, n\}
$$

Randomized Algorithms

* Algorithms may "flip coins" / vole dice"

$$
\text { i.e. } \operatorname{draw} Z \underset{{ }^{r}}{ }\{1, \ldots, n\}
$$

Randomized Algorithms

* Algorithms may "flip coins" / "role dice"
i.e. draw $Z \leftarrow\{1, \ldots, n\}$

* Running Times?
- Define a Random Variable for the RT
- Give an upper bound on the Expectation
\Rightarrow Expected Running Time

Randomized Select (L, k)
Choose pivot $p \leftarrow L[Z]$ for $Z \leftarrow_{r}\{1, \cdots,|H|$
$L \leq \leftarrow\langle i \in L: i \leq p\rangle$
$L\rangle\langle\langle j \in L: j\rangle p\rangle$
let $l=|L \leq|$
if $l=k$: Return $p / /$ pivot was $k^{\text {th }}$ elem
if $l>k$: Return Select $(L \leq, k)$
else: Return Select $(L>, k-l)$

What is the Expected RT of Randomized Select?

Arromincenents

* Prelim 1 Grades returned.
* HW 3 Grades coming soon
* HO 4 Ont today
$\longrightarrow 2$ problem set questions
1 programinivg problem

Randomized Select (L, k)
Choose pivot $p \leftarrow L[Z]$ for $Z \leftarrow_{r}\{1, \cdots,|H|$
$L \leq \leftarrow\langle i \in L: i \leq p\rangle$
$L\rangle\langle\langle j \in L: j\rangle p\rangle$
let $l=|L \leq|$
if $l=k$: Return $p / /$ pivot was $k^{\text {th }}$ elem
if $l>k$: Return Select $(L \leq, k)$
else: Return Select $(L>, k-l)$

What is the Expected RT of Randomized Select?

Random F Arbitrary
e.9: choosing random pivot is very different than choosing arbitrary pivot

Adversary is "oblivious" to algorithm's randomness
\longrightarrow Adversary can anticipate arbitrary decisions
\rightarrow Adversary cannot anticipate random decisions.

Expected Running Tine

- O(1) to sample Z (by assumption)
- On) to partition L around pivot
- 1 recursive call

$$
T(n) \leq c \cdot n+T(\alpha \cdot n)
$$

for some $\alpha<1$ depending on pivot

Expected Running Time

- O(1) to sample Z (by assumption)
- On) to partition L around pivot
- 1 recursive call

$$
T(n) \leq c \cdot n+T(\alpha \cdot n)
$$

for some $\alpha<1$ depending on pivot.
$T(n)$ is Random, so we analyze $\mathbb{E}[T(n)]$

Theorem Randomized Select runs in Expected $O(n)$ time.

Proof Strategy.

- Give an expression Tin)
$T(n)$ upper bounds running time on EVERY list of n integers
$L T(n)$ depends on randomness of alg.
- Give upper bound for $\mathbb{E}[T(n)]$

Expected Running Time Analysis
(1) Define a set of "good" pivots.
\longrightarrow Reduce the problem size significantly
(2) Show "good" pivots occur regularly. in expectation
(3) By linearity of expectation

Expected running time bounded in terms of expected number of pinots.

Step (1)
a "good" pivot is one where

$$
\left|L_{\leq}\right| \geq \frac{n}{4} \quad \text { and }|L>| \geq \frac{n}{4}
$$

ie. a relatively balanced split.

$$
\geq n / 4
$$

Step (1)
a "good" pivot is one where

$$
\left|L_{\leq}\right| \geq \frac{n}{4} \quad \text { and } \quad|L>| \geq \frac{n}{4}
$$

ie. a relatively balanced split.

Claim. If we select a good pivot, then the instance size drops by a factor $\quad \alpha=3 / 4$.

Step (1)
a "good" pivot is one where

$$
\left|L_{\leq}\right| \geq \frac{n}{4} \quad \text { and }|L>| \geq \frac{n}{4}
$$

ie. a relatively balanced split.

$$
\begin{aligned}
& T(n) \leq c n+T(3 n / 4)
\end{aligned}
$$

Step (1)
a "good" pivot is one where

$$
\left|L_{\leq}\right| \geq \frac{n}{4} \quad \text { and } \quad|L>| \geq \frac{n}{4}
$$

ie. a relatively balanced split.

$$
\begin{aligned}
& T(n) \leq c \cdot n+\underbrace{T(3 n / 4)}_{c \cdot 3 n / 4}+\underbrace{T(9 n / 16)}_{c \cdot 9 n / 16}+T(27 n / 64)
\end{aligned}
$$

Step (1)
a "good" pivot is one where

$$
\left|L_{\leq}\right| \geq \frac{n}{4} \quad \text { and } \quad|L>| \geq \frac{n}{4}
$$

ie. a relatively balanced split.

$$
\begin{aligned}
T(n) & \leq c n+T(3 n / 4) \\
& =c \cdot n+c n(3 / 4)+c n(3 / 4)^{2}+\cdots- \\
& \leq c n \sum_{j=0}^{\infty}(3 / 4)^{j}
\end{aligned}
$$

Step (1)
a "good" pivot is one where

$$
\left|L_{\leq}\right| \geq \frac{n}{4} \quad \text { and } \quad|L>| \geq \frac{n}{4}
$$

ie. a relatively balanced split.

$$
\begin{aligned}
& T(n) \leq c n+T(3 n / 4) \\
&=c \cdot c n+c n(3 / 4)+\frac{c n(3 / 4)^{2}+-\cdots}{\left\lvert\, \frac{\text { Geometric Series }}{\text { For }} \frac{\text { Fol }}{\gamma<1}\right.} \sum_{j=0}^{\infty}(3 / 4)^{j} \\
& \sum_{j=0}^{\infty} \gamma^{j}=\frac{1}{1-\gamma}
\end{aligned}
$$

Step (1)
a "good" pivot is one where

$$
\left|L_{\leq}\right| \geq \frac{n}{4} \quad \text { and } \quad|L>| \geq \frac{n}{4}
$$

ie. a relatively balanced split.

$$
\begin{aligned}
T(n) & \leq c n+T(3 n / 4) \\
& =c n+c n(3 / 4)+c n(3 / 4)^{2}+\cdots- \\
& \leq c n \sum_{j=0}^{\infty}(3 / 4)^{j} \\
& =4 c n \\
& =O(n)
\end{aligned}
$$

Expected Running Time Analysis
(1) Define a set of "good" pivots.
\longrightarrow Reduce the problem size significantly $\alpha=3 / 4$
(2) Show "good" pivots occur regularly in expectation
(3) By linearity of expectation

Expected running time bounded in terms of expected number of pinots.

Step (2)
Every time we select a pivot p what is the probability that p is "good"?

Consider the sorted list.
Which elements result in L_{\leq}and $L_{\text {, }}$ each w/n/4 elems?

Step (2)
Every time we select a pivot p what is the probability that P is "good"?

Consider the sorted list.
Which elements result in L_{2} and $L_{>}$ each $w / n / 4$ elems?

$$
\begin{aligned}
L \operatorname{Pr}[P \text { is "good" }] & =\frac{\# \text { "good" }}{\# \text { choices }} \\
& =\frac{3 n / 4-n / 4}{n}=\frac{1}{2}
\end{aligned}
$$

Step (2) contd.

What is the expected number of pivot selections until we select a good pivot?
X = number of pivot selections until good:
X is a Geometric Random Variable

Geometric Random Variable
independent
X represents \# of trials before success.
each trial succeeds with probability p.

$$
\operatorname{Pr}[X=h]=(1-p)^{n} p
$$

Geometric Random Variable
X represents \# of trials before success.
each trial succeeds
with probability p.
What is the expectation of a geometric RV?
Geometric distribution is "memoryless"

$$
\mathbb{E}[X \mid X>i]=i+\mathbb{E}[X]
$$

Geometric Random Vavialde
X represents \# of trials before success. each trial succeeds with probability p
What is the expectation of a geometric RV?
Geometric distribution is "memoryless"

$$
\mathbb{E}[x]=\operatorname{Pr}[x=1]+\mathbb{E}[x \mid x>1] \operatorname{Pr}[x \neq 1]
$$

Geometric Random Variable
X represents \# of trials before success.
each trial succeeds
with probability p.
What is the expectation of a geometric RV?
Geometric distribution is "memoryless"

$$
\begin{aligned}
\mathbb{E}[x]= & \operatorname{Pr}[x=1]+\mathbb{E}[x \mid x>1] \cdot \operatorname{Pr}[x \neq 1] \\
& =p+(1+\mathbb{E}[x])(1-p) \\
\Rightarrow & p \mathbb{E}[x]=1 \Rightarrow \mathbb{E}[x]=\frac{1}{p}
\end{aligned}
$$

Step (2) contd.

What is the expected number of pivot selections until we select a good pivot?
X = number of pivot selections until good:
X is a Geometric Random Variable up $1 / 2$

$$
\mathbb{E}[x]=\frac{1}{\operatorname{Pr}[\text { "good "pivot }]}=2
$$

Expected Running Time Analysis
(1) Define a set of "good" pivots.
\longrightarrow Reduce the problem size significantly $\alpha=3 / 4$
(2) Show "good" pivots occur regularly in expectation
(3) By linearity of expectation

Expected running time bounded in terms of expected number of pinots.

Step (3)
At every "good" pivot, instance size drops by $3 / 4$ factor.

Recurrence (Intuition)

* Assume "bad" pivots make No progress

$$
T(n) \leq c n+T(n)
$$

* "good" pivots get

$$
T(n) \leq c n+T(3 n / 4)
$$

Step (3)
Let X_{j} be geometric RV for $p=1 / 2$, representing number of pivots from $j^{\text {th }}$ until $(j+1)^{\text {th }}$ good pivot

Total work upper bounded by

$$
T(n) \leq X_{0} \cdot c n+X_{1} c n \cdot(3 / 4)+X_{2} \cdot c n(3 / 4)^{2}+\cdots
$$

Step (3)
Let X_{j} be geometric $R V$ for $p=1 / 2$, representing number of pivots from $j^{\text {th }}$ until $(j+1)^{\text {th }}$ good pivot

Total work upper bounded by

$$
\begin{aligned}
T(n) & \leq X_{0} c n+X_{1} \cdot c n(3 / 4)+X_{2} \cdot n(3 / 4)^{2}+\cdots \\
& \leq \sum_{j=0}^{\infty} X_{j} \cdot c n(3 / 4)^{j}
\end{aligned}
$$

Step (3)
Expected work?
Apply linearity of expectation 1

$$
\mathbb{E}[T(n)] \leq \mathbb{E}\left[\sum_{j=0}^{\infty} x_{j} \cdot c n(3 / 4)^{j}\right]
$$

Step (3)
Expected work?
Apply linearity of expectation!

$$
\begin{aligned}
\mathbb{E}[T(n)] & \leq \mathbb{E}\left[\sum_{j=0}^{\infty} x_{j} \operatorname{cn}(3 / 4)^{j}\right] \\
& =\sum_{j=0}^{\infty} \mathbb{E}\left[x_{j}\right] \cdot c n(3 / 4)^{j}
\end{aligned}
$$

Step (3)
Expected work?
Apply linearity of expectation!

$$
\begin{aligned}
\mathbb{E}[T(n)] & \leq \mathbb{E}\left[\sum_{j=0}^{\infty} x_{j} \operatorname{cn}(3 / 4)^{j}\right] \\
& =\sum_{j=0}^{\infty} \mathbb{E}\left[x_{j}\right] \cdot c n(3 / 4)^{j} \\
& =\mathbb{E}[x] c n \sum_{j=0}^{\infty}(3 / 4)^{j}
\end{aligned}
$$

Step (3)
Expected work?
Apply linearity of expectation!

$$
\begin{aligned}
\mathbb{E}[T(n)] & \leq \mathbb{E}\left[\sum_{j=0}^{\infty} x_{j} \cdot c_{n}(3 / 4)^{j}\right] \\
& =\sum_{j=0}^{\infty} \mathbb{E}\left[x_{j}\right] \cdot c n \cdot(3 / 4)^{j} \\
& =\mathbb{E}[x] \cdot c n \sum_{j=0}^{\infty}(3 / 4)^{j} \\
& 2
\end{aligned}
$$

Step (3)
Expected work?
Apply linearity of expectation!

$$
\begin{aligned}
\mathbb{E}[T(n)] & \leq \mathbb{E}\left[\sum_{j=0}^{\infty} x_{j} \cdot c n(3 / 4)^{j}\right] \\
& =\sum_{j=0}^{\infty} \mathbb{E}\left[x_{j}\right] \cdot c n(3 / 4)^{j} \\
& =\mathbb{E}[x] c n \sum_{j=0}^{\infty}(3 / 4)^{j} \\
& =8 c n \\
& =O(n)
\end{aligned}
$$

Expected Running Time Analysis
(1) Define a set of "good" pivots.
\longrightarrow Reduce the problem size significantly $\alpha=3 / 4$
(2) Show "good" pivots occur regularly in expectation
(3) By linearity of expectation

Expected running time bounded in terms of expected number of pinots.

Expected Runtime vs High Probability?

* Good to have a guarantee of linear time.

What is the probability that Randomized Select runs for longer than T steps?

Markov's Inequality.

$$
\operatorname{Pr}[Z>t] \leq \frac{\mathbb{E}[Z]}{t}
$$

$$
\begin{aligned}
\operatorname{Pr}\left[\begin{array}{c}
\text { Reelect runs longer than } \\
16 \mathrm{c} \cdot n \text { time }
\end{array}\right] & \leq \frac{\mathbb{E}[T(n)]}{16 \cdot \mathrm{cn}} \\
& \leq \frac{8 \cdot \mathrm{cn}}{16 \cdot \mathrm{cn}} \\
& =1 / 2
\end{aligned}
$$

$$
\operatorname{Pr}[\text { Reelect runs longer than }] \leq 1 / n^{100}
$$

