23 Feb The Fast Fourier Transform

Announcements:
(1) No office hours Feb break (Sat-Tuos)
(2) Prob set 2 grades to be released today pralion grades ASAP.

Multiply polynamids $\quad A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}$

$$
B(x)=b_{0}+\cdots+b_{n-1} x^{n-1}
$$

Find the coefficients of the product.
Given sequences $\left(a_{0}, \ldots, a_{n-1}\right)$ and $\left(b_{0}, \ldots, b_{n-1}\right)^{\prime} b$ find their convolution $C=\left(c_{0}, \ldots, c_{2 n-2}\right)$ given by

$$
c_{k}=\sum_{i+j=k} a_{i} b_{j}
$$

A proposal for multiplying polynomials fast.
0. Choose points $z_{0}, \ldots, z_{2_{n-1}}$ where we plan to evaluate the polynomials.
$O\left(n^{2}\right) \longrightarrow 1$. Calculate $A\left(z_{i}\right)$ and $B\left(z_{i}\right)$ for $i=0, \ldots, 2 n-1$.
$O(n) \longrightarrow 2$. Catcubte $C\left(z_{i}\right)=A\left(z_{i}\right) \cdot B\left(z_{i}\right)$ for $i=0, \ldots, 2 n-1$.
3. "Interpolation": find the coffrieients of the unique degree $2 n-1$ polynomial $C(x)$ taking the values calculated in s step Z, ot $z_{0, \ldots,}, z_{2 m 1}$

The Fast Fourier Transform: An $O(n \log n)$ algorithm to de steps $1 \& 3$, when $z_{0}, \ldots, z_{2 n-1}$ are the complex $\frac{2 n^{\text {th }}}{n_{N}}$ roots of verity.

$\omega=e^{\frac{2 \pi}{N}}$ is a
"primitive $n^{\text {th }}$ rot of unity"

$$
\begin{aligned}
& \omega^{N}=e^{2 \pi}=\cos (2 \pi)+i \sin (2 \pi) \\
& \text { If } \quad j \in \mathbb{Z}=1 \\
& \left(\omega^{j}\right)^{N}=\left(\omega^{N}\right)^{j}=1 .
\end{aligned}
$$

(discants)
The n Fourier transform of a sequence a_{0}, \ldots, a_{N-1} is the sequence $\hat{a}=\left(\hat{a}_{0}, \hat{a}_{1}, \ldots, \hat{a}_{N-1}\right)$ where

$$
\hat{a}_{j}=A\left(\omega^{j}\right)=a_{0}+a_{1} \omega^{j}+a_{2} \omega^{2 j}+\cdots+a_{N-1} \omega^{(N-1) j}
$$

Computing FT $\left(a_{0}, \ldots, a_{n-1}\right)$ is the same as cualuating $A\left(\omega^{j}\right)$ for $j=0, \ldots, N-1$.

The DFT, matrix of order N is

$$
f-\left[\begin{array}{cc}
& \\
& \\
-\omega^{j}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
\vdots \\
a_{N-1}
\end{array}\right]=\left[\sum a_{i} \omega^{j j}\right]=j=\hat{a}
$$

F

$$
F^{2}=\left[\begin{array}{cccc}
N & 0 & 0 & \cdots \\
0 & 0 & - & N \\
0 & 0 & - & N \\
0 & 0 & N & O
\end{array}\right]
$$

Step 3 of the polynomial multiplication algorithm reduces to step 1 because the identity $F^{2}=\left[\begin{array}{ccc}N & 0 & 0 \\ 0 & 0 & 0 \\ 0 & N^{N} & -N\end{array}\right]$ shows that the inverse Fourier transform (Step 3) is the Fourier transform (step 1) followed by scaling by $\frac{1}{v}$ and permuting coordinates (both linear time operations).

Write $\quad A(x)=A_{\text {even }}\left(x^{2}\right)+x A_{\text {odd }}\left(x^{2}\right)$

$$
\begin{aligned}
& A_{\text {even }}(y)=a_{0}+a_{2} y+a_{4} y^{2}+\cdots+a_{N-2} y^{\frac{N}{2}-1} \\
& A_{o d d}(y)=a_{1}+a_{3} y+a_{5} y^{2}+\cdots+a_{N-1} y^{\frac{N}{2}-1}
\end{aligned}
$$

To evaluate $A\left(\omega^{j}\right)$ for $j=0, \ldots, N-1$.
$F T$ of $:\left\{\begin{array}{ll}(1) & E_{v a l}\end{array} A_{\text {even }}\left(\omega^{2 j}\right)\right.$
size $\frac{N}{2} \cdot\left\{\begin{array}{ll} & j=0, \ldots, \frac{N}{2}-1 \\ (2) & E_{\text {val }}\end{array} A_{\Delta d d}\left(\omega^{2 j}\right)\right.$ for $j=0, \ldots, \frac{N}{2}-1$
(3) Compute $A\left(\omega^{j}\right)=A_{\text {even }}\left(\omega^{2 j}\right)+\omega^{j} \cdot A_{\text {odd }}\left(\omega^{2 j}\right)$.

Assume $\quad N=2^{k}$.

$$
\begin{array}{r}
T(N)=2 T\left(\frac{N}{2}\right)+O(N) \\
\Longrightarrow \quad T(N)=O(N \log N)
\end{array}
$$

