Introduction to Algorithms Online choice
CS 4820 Spring 2016 by Eva Tardos

This lecture we consider the problem of selecting the best of n options as they show up one at-a-time.
Here we will aim to exploit randomness in the input, in particular in the order of the items showing up.

The problem. Given n numbers, say each written on a separate card. Suppose we are presented
these cards one at-a-time, and we need to selected one just as it appears. What is the algorithm that
maximizes the chance of selecting the highest number? Without any assumption of randomness this
appears to be a really hard (or hopeless) task. For some historical reason this problem is often refereed
to as the secretary selection problem. Surprisingly, one can make this probability quite high, a constant
independent of the number of cards n.

1 First idea

Maybe a natural first idea is that with decent probability that the first few items are not the largest.
For example, with probability 1/2 the highest item is not among the first half of the set. So we can
afford to see half of the cards. In fact, with probability &~ 1/4 the top card is in the second half of the
sequence while the second highest is in he first half. In this case, after looking at the first half, the
maximum is the unique item higher than any of the numbers in the first half, so it is easy to identify.

One way to phrase this algorithm is as follows, where » = 1/2 and we use v; to be the value of the
ith number

Compute m = maxXj<ij<rn ¥; Wwhile seeing the first rn items
i=|rn]+1
While 2 <n and no item selected
Select 7 if v; > m
1+—1+1
Endwhile
Output v; if an item is selected

As we argued above:
Claim The probability that the above algorithm outputs the maximum value max v; is at least 0.25.

Is this algorithm best possible?

e Maybe the simplest alternative to think about is the amount of time we wait before trying to look
for a larger value. i.e., to pick a different value r # 1/2.

e Another important point to think about, even if the maximum value is not the unique item bigger
than m in the second part, we can get lucky, if the maximum is the first larger item that appears.

2 Better Analysis of the Algorithm

We start with an improved analysis of the algorithm above, and then optimize the value r for best
performance. A nice idea to make the analysis simpler is to separate out cases depending on what
position the maximum value item is. For each position ¢ the probability that the maximum item is in
position ¢ is 1/n, as the sorting of items is uniform random.

Consider now the special case that the maximum item is in position ¢. If ¢ < rn, then we will
definitely not select the maximum item. The following simple claim is the key to the analysis:



Claim. The algorithm will select the maximum item when it is in position ¢ > rn if and only if the
maximum value among the ¢ — 1 items that are in the first ¢ — 1 position is in one of the rn first position.

Proof. This condition is clearly both necessary and sufficient. Assume that the maximum item
among the first ¢ — 1 position has value v;. If this occurs in one of the rn first positions than m = v;,
and the first item of value at least v; is the maximum item in position . If this is not the case, then
m < vj, and either v; or an item even earlier will be picked before the algorithm reached position i.

Now we are ready to analyze the probability of success. Assume for simplicity of notation that rn
is integer.

n

1
Pr(Algorithm pick max item) = Z — Pr(Algorithm pick max item|max item is in position )
i=rn+1
"1 - 1
D IR r s R Dl
i=rn+1 i=rn+1

Now using the close bound that
n—1 1 n
Z - > / —dr =Inn —In(rn) = —Inr
— g m T
1=rn
Using this approximation we get that
Pr(Algorithm pick max item) > —rlnr

Based on this formula, the best r is the one maximizing —r Inr, which we get by setting the derivative
to 0, that is solving —Inr — 1 = 0, which gives us r = 1/e = 0.368.
With this = n/e, the probability of picking the maximum value is

n—1

1 n_1m

TZ—.E/ zf/ 1/xde ~ 1/2.
[Lr—— n € Jnje—2

Giving is the following claim.

Claim The algorithm stated above, with r = 1/e ~ 0.37 will select the maximum element with

probability ~ 0.37.
We



	First idea
	Better Analysis of the Algorithm

