Reduction from 3 SAT to MAX CUT

Recall that a cut of a graph is a subset of the notes that is neither empty nor the whole
node set. The capacity of a cut is the sum of the capacities of the edges crossing the cut.

Problem (max cur). Given an undirected graph G with nonnegative edge capacities
and a parameter c € R, decide if there exists a cut in G with capacity at least c.

The problem of deciding if there exists a cut with capacity at most c is called MIN cUT.
This problem has a polynomial time algorithm (for example, using network flows). In
contrast, no polynomial time algorithm is known for max cur. The following theorem
explains this situation.

Theorem. max cur is NP-hard.

We prove the theorem by a chain of reductions. We reduce from 3-sat to NAE 4-sAT to
NAE 3-sAT to Max cuT. (The reason for going through NAE sar is that both Mmax cut and nae
sat exhibit a similar kind of symmetry in their solutions.)

Problem (NAE k-saT). Given a set of clauses, each containing up to k literals, decide if
there exists an assignment to the variables such that for every clause the Not-all-equal
(NAE) predicate is satisfied, that is, not all literals in the clause have the same truth value.

Claim. 3-saT reduces in polynomial time to NAE 4-sAT.

Proof. We will give a polynomial-time algorithm A that given a 3-sat instance constructs
an equivalent NAE 4-sat instance. Given a 3-sat instance ¢, the algorithm A constructs a
NAE 4-sAT instance ¢’ = A(p) by adding a variable z to every clauses. (The variable z is
distinct from the variables that appear in ¢.) For example, the 3-saT clause x; V x3 V —xy
would be replaced by the NAE 4-saT clause NAE(x1, x3, Xy, z).!

We are to show that ¢ is satisfiable if and only if ¢’ is satisfiable. If xq,...,x, is a
satisfying assignment for ¢, then the same assignment satisfies ¢ when we choose z = 0.?
The reason is the following identity,

aVbVc=nNag(@,b,c0) (1)

(In words, a disjunction of terms is true if and only not all terms are equal to 0.) To
show the other direction, suppose xi,...,x,,z is a satisfying assignment of ¢’. No-
tice that —xy, ..., ~x,, -z is also a satisfying assignment of ¢’ (because NaE(a, b, c,d) =
NAE(—a, =b, =c, =d)). In one of these two assignments, the value assigned to the variable
z is 0. This assignment corresponds to a satisfying assignment for ¢ (again using the
identity above).

Claim. NAE 4-saT reduces in polynomial time to NAE 3-sAT.

Proof. Given an NAE 4-sat instance ¢, we will construct an equivalent NAE 3-saT instance
)
1

¢’ by splitting every NAE 4-sat clause C;’ = NAE(a, b, ¢, d) in ¢ into two NAE 3-sat clauses

ng) = NaAE(a, b, w;) and Cl.2 = NAE(—wj, ¢, d) that are linked together by an additional new
variable w;.

The correctness of the reduction follows from the following fact: Four Boolean values
a,b,c,d are not all equal if and only if there exists a Boolean value w such that NaE(a, b, w)
and NaE(—w, ¢, d).”



Claim. NAE 3-saT reduces in polynomial time to MmaXx cuUT.

Proof. Given a NAE 3-sAT instance ¢, we will construct an equivalent Max cuT instance
(G, ¢). For every variable x; of ¢, we will add two vertices to G labeled by x; and —x; and
we will connect the two vertices by an edge. We assign capacity M = 10 - m to each of
these “variable” edges. (Here, m is the number of clauses in ¢ and 7 is the number of
variabes.) For every clause C in ¢, we will add a “clause” triangle between the vertices
corresponding to the terms in C. We assign capacity 1 to each of these “clause” edges.*

We claim that G contains a cut with capacity at least n- M + 2 - m if and only if ¢ is
satisfiable.

Suppose ¢ is satisfiable and consider any satisfying assignment. This assignment
corresponds to a cut in G. (One side of the cut consists of all vertices labeled by terms that
evaluate to 1 in the assignment. The other side of the cut consists of all vertices labeled by
terms that evaluate to 0 in the assignment.) Since exactly one of terms x; and —x; evalute
to 1in an assignment, all variable edges go across the cut, which contributes n - M to the
capacity of the cut. Since the assignment satisfies ¢, exactly two edges in every clause
triangle go across the cut, which contributes 2 - m to the capacity of the cut. In total the
capacity of the cutis equal ton - M +2 - m.

On the other, suppose that G contains a cut with capacity at least n - M + 2 - m. First, we
claim that all variable edges go across this cut. The reason is that any cut that misses at
least one of the variable edges has capacity at most (n —1)-M+3-m=n-M+3-m—10m,
which is strictly smaller than n - M + 2m. Next, we claim that exactly two edges of every
clause triangle go across the cut. The reason is that no cut can separate three edges of a
triangle and therefore if a cut separates fewer than two edges in one of clause triangles,
then its capacity is strictly smaller than n - M + 2m. Since all variable edge go across, this
cut corresponds to an assignment for ¢. Furthermore, since the cut separates exactly two
edges per clause triangle, the corresponding assignment satisfies all clauses of ¢.

Footnotes
. Here, NaE is the Boolean operation that evaluates to TrRUE if and only if not all of its inputs are equal.
. We use 0 and 1 to abbreviate the Boolean values raLSE and TRUE.
. T'only know how to verify this fact by a somehwat cumbersome case distinction.

. In this description, we assume that every clause contains three distinct variables. This assumption can be
justified by a preprocessing step. Alternatively, we can modify the reduction slightly to accomodate such
clauses.



