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Maximum Coverage Problem

• given: subsets S1, . . . ,Sm of a ground set U = {u1, . . . ,un}, parameter k ∈N
• find: collection C of k sets so as to maximize the number of covered elements

This problem is NP-complete. In this lecture, we will develop an approximation algorithm
for this problem based on linear programming.

LP relaxation for Max Coverage

Given an instance I of Max Coverage, we construct the following LP instance LP(I).

• variables: x1, . . . , xm and y1, . . . , yn

• constraints:
m∑

i=1

xi = k , (cardinality constraint)∑
i : u j∈Si

xi ≥ y j for j ∈ {1, . . . ,n} , (coverage constraints)

0 ≤ xi ≤ 1 for i ∈ {1, . . . ,m} ,
0 ≤ y j ≤ 1 for j ∈ {1, . . . ,n} .

• objective: maximize
∑n

j=1 y j

Claim 1. Opt LP(I) ≥ OptI.

Proof. Let C be an optimal solution for I, that is, a collection of k sets that cover OptI
elements of U. We are to construct a solution of LP(I) with objectie value at least OptI.

Consider the following solution to LP(I),

xi =

1 if Si ∈ C

0 otherwise,
and y j =

1 if u j ∈
⋃

Si∈C
Si

0 otherwise.

This solution satisfies the cardinality constraint because exactly k of the variables x1, . . . , xm
are set to 1 and the rest are set to 0. The solution also satisfies the coverage constraints for
all j ∈ {1, . . . ,n}. If y j = 0, then the corresponding coverage constraint is satisfied because
all xi values are nonnegative. Otherwise, if y j = 1, then u j is covered by C, which means
that one of the sets Si ∈ C contains u j. Therefore, at least one of terms of the sum

∑
i : u j∈Si

xi
is equal to 1, which is enough to satisfy the inequality.

Claim 2 (Randomized rounding algorithm). There exists a randomized algorithm that,
given an optimal solution to LP(I), outputs a collection C of k sets that in expectation
covers at least (1 − 1/e) ·Opt LP(I) elements of U.
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We defer the proof of Claim 2 to the next section. At this point, let us note that Claim 1
and Claim 2 together give a (1 − 1/e)-approximation algorithm for Max Coverage.

LP-based Approximation Algorithm for Max Coverage. Given an instance I
of Max Coverage, we construct the linear-programming instance LP(I). Using
a polynomial-time algorithm for linear-programming, we compute an optimal
solution for LP(I). We apply the randomized rounding algorithm from Claim
2 to this LP solution to obtain a solution for the original problem instance I
that covers at least (1 − 1/e) ·Opt LP(I) elements, which, by Claim 1, is within
a 1 − 1/e factor of Opt(I)—the maximum number of elements that k sets can
cover.

Randomized Rounding—Proof of Claim 2

Let I be an instance of MC and let x1, . . . , xm and y1, . . . , yn be a solution to LP(I) with
value Opt LP(I). The following efficient randomized algorithm turns this LP solution into
a collection C of k sets that covers at least (1 − 1/e) ·Opt LP(I) elements in expectation.

• Interpret the numbers x1/k, . . . , xm/k as probabilities for the sets S1, . . . ,Sm.
(Notice that these numbers are nonnegative and add up to 1 according to
the constraints of LP(I).)

• Choose k sets independently at random according to these probabilities.
• Output the collection C consisting of the k chosen sets.

Claim. For every element u j ∈ U, the probability that the collection C produced by the
rounding algorithm covers u j is at least (1 − 1/e) · y j

Proof. If we choose a random set according to the probabilities x1/k, . . . , xm/k, it covers
element u j with probability

∑
i : u j∈Si

xi/k ≥ y j/k. (Here, we use the coverage constraints.)
Therefore, the probability that none of the k sets chosen by the rounding algorithm covers
u j is at most (1− y j/k)k. Thus, the element u j is covered by the collection Cwith probability
at least 1− (1− y j/k)k. It remains to verify that 1− (1− y j/k)k

≥ (1− 1/e) · y j. In the interval
[0, 1], the function on the left is concave and the function on the right is linear. Since the
inequality is satisfied at the end points of the interval (i.e., y j = 0 and y j = 1), it follows
that the inequality holds in the entire interval. (A good way to verify this argument is to
plot the two functions in the interval [0, 1].)

Claim. The expected number of elements covered by C is at least (1 − 1/e) ·Opt LP(I).

Proof. Let Z j be the 0/1-valued random variable such Z j = 1 indicates the event that C
covers u j. Then, the number of elements that C covers is equal to

∑n
j=1 Z j. Therefore, by

linearity of expectation, the expected number of elements covered by C is equal to

E
n∑

j=1

Z j =

n∑
j=1

EZ j

Since Z j is a 0/1-valued random variable, the expectation of Z j is equal to the probability
that Z j = 1. Hence, the expected number of elements covered by C is equal to∑

j

Pr{Z j = 1} =
∑

j

Pr{C covers u j} ≥ (1 − 1/e)
∑

j

y j = (1 − 1/e) ·Opt LP(I) .
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