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Maximum Coverage Problem

e given: subsets S1,...,S, of a ground set U = {uy, ..., u,}, parameter k € N
e find: collection C of k sets so as to maximize the number of covered elements

This problem is NP-complete. In this lecture, we will develop an approximation algorithm
for this problem based on linear programming.

LP relaxation for Max Coverage

Given an instance J of Max Coverage, we construct the following LP instance LP(7).

e variables: x1,...,xy and y1,..., Yy
e constraints:

m

Z xi=k, (cardinality constraint)
i=1

Z xi>y; forjefl,...,n}, (coverage constraints)
i uj€s;

0<x;<1 foriell,..., m},

0<y;j<1 forjefl,..., n}

e objective: maximize }.7_; y;
Claim 1. OptLP(Z) > Opt 1.

Proof. Let C be an optimal solution for 7, that is, a collection of k sets that cover OptJ
elements of U. We are to construct a solution of LP(Z) with objectie value at least Opt 7.

Consider the following solution to LP(Z),

1 ifS;eC 1 if uje USveCSi
i = . andy;= -
0 otherwise, 0 otherwise.

This solution satisfies the cardinality constraint because exactly k of the variables x1, ..., x;,
are set to 1 and the rest are set to 0. The solution also satisfies the coverage constraints for
allj€{1,...,n}. If y; = 0, then the corresponding coverage constraint is satisfied because
all x; values are nonnegative. Otherwise, if y; = 1, then u; is covered by C, which means
that one of the sets S; € C contains ;. Therefore, at least one of terms of the sum };. ujes; Xi
is equal to 1, which is enough to satisfy the inequality.

Claim 2 (Randomized rounding algorithm). There exists a randomized algorithm that,
given an optimal solution to LP(J), outputs a collection C of k sets that in expectation
covers at least (1 — 1/e) - Opt LP(Z) elements of U.



We defer the proof of Claim 2 to the next section. At this point, let us note that Claim 1
and Claim 2 together give a (1 — 1/e)-approximation algorithm for Max Coverage.

LP-based Approximation Algorithm for Max Coverage. Given an instance 1
of Max Coverage, we construct the linear-programming instance LP(J). Using
a polynomial-time algorithm for linear-programming, we compute an optimal
solution for LP(Z). We apply the randomized rounding algorithm from Claim
2 to this LP solution to obtain a solution for the original problem instance 1
that covers at least (1 — 1/e) - Opt LP(Z) elements, which, by Claim 1, is within
a1 —1/e factor of Opt(J)—the maximum number of elements that k sets can
cover.

Randomized Rounding—Proof of Claim 2

Let 7 be an instance of MC and let xq,...,x, and vy, ..., y, be a solution to LP(Z) with
value Opt LP(Z). The following efficient randomized algorithm turns this LP solution into
a collection C of k sets that covers at least (1 — 1/e) - Opt LP(Z) elements in expectation.

o Interpret the numbers x; /k, ..., x;,/k as probabilities for the sets Sy, ..., Sy.
(Notice that these numbers are nonnegative and add up to 1 according to
the constraints of LP(7).)

e Choose k sets independently at random according to these probabilities.

e Output the collection C consisting of the k chosen sets.

Claim. For every element u; € U, the probability that the collection C produced by the
rounding algorithm covers u; is at least (1 — 1/e) - y;

Proof. If we choose a random set according to the probabilities x1 /k, ..., x,,/k, it covers
element u; with probability };. ujes; Xil k > yj/k. (Here, we use the coverage constraints.)
Therefore, the probability that none of the k sets chosen by the rounding algorithm covers
ujisatmost (1-y;/ k)¥. Thus, the element u j is covered by the collection C with probability
atleast1—(1-— yj/k)k. It remains to verify that 1 — (1 - yj/k)k > (1-1/e)-y;. In the interval
[0, 1], the function on the left is concave and the function on the right is linear. Since the
inequality is satisfied at the end points of the interval (i.e., y; = 0 and y; = 1), it follows
that the inequality holds in the entire interval. (A good way to verify this argument is to
plot the two functions in the interval [0, 1].)

Claim. The expected number of elements covered by C is at least (1 — 1/e) - Opt LP(Z).

Proof. Let Z; be the 0/1-valued random variable such Z; = 1 indicates the event that C
covers u;. Then, the number of elements that C covers is equal to Z';:l Z;. Therefore, by
linearity of expectation, the expected number of elements covered by C is equal to

]Eiz]- = i]Ez]-
j=1 j=1

Since Z; is a 0/1-valued random variable, the expectation of Z; is equal to the probability
that Z; = 1. Hence, the expected number of elements covered by C is equal to

ZPrZ =1} ZPrCCoversu]}>(l—1/e)Zy] (1-1/e)-OptLP(Z).
j
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