
Introduction to Analysis of Algorithms Prelim 1 study sheet
CS 4820, Summer 2013 Prelim on July 17

This document lists the things that you should be able to do for the first prelim.

1 Problem sets

Questions about problem sets 1 and 2 are fair game. Be sure you can explain and can avoid any
mistakes you made on them.

2 Stable matching

Definitions:

• recall the definitions of matching, perfect matching, stable matching, best(m), worst(m)

Sample question: Define stable matching.

Sample question: Give an example stable matching problem instance having
some m for whom best(m) is not m’s first choice.

Sample question: Is the following matching stable? [picture]

Sample question: Find best(m1) in the following matching problem. [picture]

Gale-Shapley Algorithm

• describe and execute the Gale-Shapley algorithm

Sample question: List the engagements that take place while executing Gale-
Shapley on the following instance of the stable matching problem. [picture]

• characterize the result of the algorithm

Sample question: Can the following matching be produced by the Gale-Shapley
algorithm? Why or why not?

3 Greedy algorithms

Problems:

• describe the greedy algorithms we gave in class

– Interval scheduling / first end time

– Scheduling to minimize lateness / first deadline



– MST / Prim’s Algorithm, Kruskal’s Algorithm

Sample question: Recall that the definition of the scheduling with minimum
lateness problem is [. . . ]. Describe a greedy algorithm that produces an optimal
solution to this problem.

Sample question: Give psudeocode for Prim’s algorithm

Sample question: List the edges added to the minimum spanning tree in the
order they are added by Kruskal’s algorithm

Proof techniques

• construct proofs using a “greedy stays ahead” argument

Sample question: Consider the following problem: [. . . ]. Suppose Alice has
given you the following algorithm: [. . . ]. Suppose that Alice has also proved that
at every step, her algorithm is ahead of an optimal solution, in the sense that
f(ei) ≤ f(oi). Show that Alice’s algorithm produces an optimal solution.

Sample question: Consider the following problem: [. . . ]. Suppose Bob proposes
the following greedy algorithm to solve it. By what measure does his algorithm
“stay ahead”? Give an inductive proof that ther is true.

Greedy algorithm design

• Propose greedy algorithms for problems

Sample question: Consider the following problem: [. . . ]. Give a greedy algo-
rithm that produces an optimal solution to this problem.

• Construct counterexamples for greedy algorithms

Sample question: Consider the following problem: [. . . ]. Chuck claims that
the following algorithm produces an optimal result. Construct an example where
Chuck’s algorithm produces an incorrect result.

4 Divide and conquer

Analysis techniques

• Informal analysis by drawing recursion trees

Sample question: Consider the following divide-and-conquer style algorithm:
[. . . ]. Write a summation describing the running time of the algorithm.

• Derive a recurrence relation from an algorithm



Sample question: Let T (n) be the running time for the following algorithm:
[. . . ]. Write a recurrence relation that describes T (n).

• Construct an inductive proof of a recurrence solution

Sample question: Suppose an algorithm’s running time satisifies T (n) ≤ 2T (n/2)+
n2. Assume that C > T (1) and C > 2. Prove by induction that T (n) ≤ Cn2.

5 Dynamic programming

Problems:

• Describe and execute the dynamic programming algorithms we described in class

– Weighted interval scheduling

– Sequence alignment

– Shortest paths with negative edges / Bellman-Ford

Sample question: Recall the definition of the weighted interval scheduling prob-
lem: [. . . ]. Describe a dynamic programming solution to this problem.

Sample question: Fill in the following memo table for an execution of the
Bellman-ford algorithm on the following graph: [. . . ].

Proof techniques:

• Given a problem description, describe the form of an optimal solution in various cases.

Sample question: Consider the following problem. Suppose you are given a
weighted set of objects o1, o2, . . . , on with weights w1, w2, . . . , wn, and a weight
budget W . Describe the possible solutions that contain on. Describe the optimal
solutions that do not contain on.

• Given a recursive program to compute a solution, construct suitable memo tables for that
solution and give the running time the resulting dynamic program.

Sample question: Give an upper bound on the running time for a memoized
version of the following algorithm: [. . . ]


