Introduction to Analysis of Algorithm	\mathbf{s}
CS 4820, Summer 2013	

Hand in your solutions electronically using CMS and submit a paper copy in class. Write your name and NetID on the first page.

Remember that when a problem asks you to design an algorithm, you must also prove the algorithm's correctness and analyze its running time. The running time must be bounded by a polynomial function of the input size, unless specified otherwise.

- 1. [10 points] Problem 5.1 from the text.
- 2. [10 points] Problem 5.3 from the text.
- 3. [10 points] Design a $o(n^2)$ -time (i.e., subquadratic) algorithm that finds the maximum product of any contiguous subsequence of a given sequence of n rational numbers a_1, \ldots, a_n . The empty set is a valid subsequence, whose product is 1. You should assume that the basic operations (addition, subtraction, multiplication, division, and comparison) on two rational numbers are performed in O(1) time.

Example. The solution for $\left[\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right]$ is 1; the solution for [3, 0, -2, -2] is 4.