In class today I gave an inductive proof that always merging smaller trees into larger in the union-find data structure keeps the trees balanced. As pointed out to me by Kun He, the proof was not correct, because I left out a case. Here is a correct proof.

Lemma 1. In the union-find data structure, if we always merge smaller trees into larger (that is, make the root of the smaller tree point to the root of the larger), then for any tree t at any point in time,

size(t) $\geq 2^{\operatorname{height}(t)}$.

Proof. By induction on the number of union operations. For the basis, initially all trees are single nodes, and $size(t) = 1 = 2^0 = 2^{height(t)}$.

For the induction step, suppose at some point we merge t_2 into t_1 to get t_3 . There are two cases:

Case 1. The height of t_1 does not grow by merging t_2 into it; that is, height $(t_3) =$ height (t_1) . Then

$\operatorname{size}(t_3) = \operatorname{size}(t_1) + \operatorname{size}(t_2)$	
$\geq \operatorname{size}(t_1)$	
$\geq 2^{\operatorname{height}(t_1)}$	induction hypothesis
$=2^{\operatorname{height}(t_3)}$	since $\operatorname{height}(t_3) = \operatorname{height}(t_1)$.

Case 2. The height of t_1 grows by merging t_2 into it; that is, height $(t_3) = \text{height}(t_2) + 1$. Since we always merge smaller trees into larger, size $(t_2) \leq \text{size}(t_1)$. Then

$$\begin{aligned} \operatorname{size}(t_3) &= \operatorname{size}(t_1) + \operatorname{size}(t_2) \\ &\geq 2 \cdot \operatorname{size}(t_2) & \operatorname{since } \operatorname{size}(t_2) \leq \operatorname{size}(t_1) \\ &\geq 2 \cdot 2^{\operatorname{height}(t_2)} & \operatorname{induction hypothesis} \\ &= 2^{\operatorname{height}(t_2)+1} \\ &= 2^{\operatorname{height}(t_3)} & \operatorname{since } \operatorname{height}(t_3) = \operatorname{height}(t_2) + 1. \end{aligned}$$