
Oracles

What if one could solve the halting problem?

New kind of Turing machine

oracle ← oracle for halting problem

↙ answer

↖ question

How do I ask a question? Turing machine writes question on second tape and oracle reads
question and gives yes or no answer.

oracle

2nd tape for questions to oracle.

The halting oracle answers the question ”Does Mi on xj halt?”
Let S = {(M,x)|M halts on x}

Just as we defined recursive and r.e. we can define oracle recursive and oracle r.e. with
respect to the oracle S.

recursive

r.e.
recursive

oracle
r.e. oracle

←− LD is oracle recursive complete
←− Loracle

D is oracle r.e. complete

Loracle
D

1. (a) r.e. sets are oracle recursive The oracle can tell if a Tm halts.

(b) LD = {xi|xi /∈ L(Mi)} oracle recursive since the oracle can solve the halting
problem. LD is oracle recursive hard since {(M,x)|x ∈ L(M)} is polynomial
time reducible to LD. Create Mx that accepts input Mx if x ∈ L(M). Use
LD to determine if Mx ∈ L(M).

1

2. ∃ oracle r.e. sets not oracle recursive. The sets of oracle Tm’s can be listed and we
can by diagonalization define Loracle

D .

There is a hierarchy of undecidable problems. Let M be a regular Turing machine.

1. Is x ε L(M)? is r.e.

2. Does L(M) = φ? equivalent to does there exists a valid computation.

3. Is L(M) infinite?

4. Is L(M) a regular set?

5. Is L(M) a specific infinite set? ∀x in set ∃ valid comp

6. Is L(M) a regular set? ∃ set ∀x in set ∃ valid comp.

Oracles
Attach an oracle for the halting problem to a Turing machine.

oracle

2nd tape for questions to oracle.

Define MS to be a Turing machine with an oracle for the set S.
Define S1 = {M |L(M) = Φ}.

The set S1 is not r.e. The complement set {M |L(M) 6= Φ} is r.e.
Define Si = {MSi−1|L(MSi−1) = Φ}.

The set {(M,x)|M halts when started on x} is equivalent to the complement of S1. Equiv-
alent means same complexity: the two sets are reducible to each other by an algorithm
that halts on all inputs.

Reductions
{(M,x)|M halts on x} reduction to {M |L(M) 6= Φ}

To determine if M halts on x create Mx that on every input simulates M on
x and if M halts then Mx accepts its input. Thus

L(Mx) =

{
Σ∗ M halts on x
Φ otherwise

2

{M |L(M) 6= Φ} reduction to {(M,x)|M halts on x}

To determine if L(M) 6= Φ reduction to ”Mx halts on x” create Mx that on
input x starts simulating M on longer and longer inputs for more and more
steps looking for a string x that M accepts. Use the (i, j) technique where one
simulates the ith Turing machine for j steps. If M accepts some string then
Mx halts and accepts x. Otherwise Mx runs forever.

The set {M |L(M) = Σ∗} is harder than membership. It is equivalent to S2 = {MS1|L(MS1) = Φ}.

Reduction of {M |L(M) = Σ∗} to S2 = {MS1|L(MS1) = Φ}.

Design MS1 so that

L(MS1) =

{
Φ if L(M) = Σ∗

Σ∗ otherwise

If we could determine if L(MS1) = Φ. then we could determine if L(M) = Σ∗

MS1 on every input looks for x not in L(M). If MS1 finds an x not in L(M)
then MS1 accepts its input. To find x not in L(M) requires the halting prob-
lem.

Reduction of S2 = {MS1|L(MS1) = Φ} to {M |L(M) = Σ∗}. To determine if L(MS1) = Φ
create M that accepts all invalid computations of MS1 . If the set of invalid computations
is Σ∗ then L(MS1) = Φ.

A valid computation of MS1 has q? inserted when MS1 asks a question followed
by a valid computation of an ordinary Turing machine followed by qy if the
answer is yes and just the symbol qn if the answer is no since one needs an
oracle when the answer is no. The only complicated issue in checking that the
string is an invalid computation is when the oracle returns a no.
In this case the oracle has said that L(M) = Φ when actually accepting some
string. One can determine this by the (i, j) technique of simulating M on xi
for j steps. Use oracle to determine if process halts.

The set {M |L(M) is a regular set} is equivalent to S3.

A hierarchy

L(M) 6= Φ ∃x x ∈ L(M) ∃ valid comp
L(M) = Φ ∀x x /∈ L(M) ∀ strings not valid comps
L(M) 6= Σ∗ ∃ x ∀ comps comp not valid
L(M) = Σ∗ ∀x ∃ valid comp
L(M) regular set ∃ regular set ∀x x in R iff x in L(M)

3

recursive

r.e. {M |L(M) 6= Φ} r.e. complete

S1 recursive {M |L(M) = Φ}

S1 r.e. {MS1 |L(MS1) 6= Φ} {M |L(M) 6= Σ∗}

S2 recursive {MS1 |L(MS1) = Φ} {M |L(M) = Σ∗}

S2 r.e. {MS2|L(MS2) 6= Φ} {MS1|L(M) 6= Σ∗} {M |L(M) is a regular set}

S1 = {M |L(M) = Φ} S2 = {MS1|L(SS1) = Φ}

1. (a) {M |L(M) 6= Φ} is r.e. Run M on longer and longer inputs for more and more
steps looking for x that is accepted.

(b) {M |L(M) 6= Φ} is complete for r.e. One can answer does M accept x for any

Turing machine M . Create Mx where L(Mx) =

{
Σ∗ if M accepts x
0 otherwise

2. (a) {M |L(M) = Φ} is S1 recursive Use oracle to determine whether or not M in
S1.

(b) {M |L(M) = Φ} is S1 complete

3. (a) {MS1|L(MS1) 6= Φ} is S1 r.e. Run MS1 on longer and longer inputs for more
and more steps looking for x that is accepted.

(b) {M |L(M) 6= Σ∗} is S1 r.e. Use oracle for {[M,x]|x ∈ L(M)} which is equiv-
alent to S1 to search for x 6= L(M). If it finds x /∈ L(M) it halts. Otherwise it
runs forever.

4

4. (a) {MS1|L(MS1) = Φ} is S2 recursive Use oracle for S1 to determine whether
or not MS1 in S1.

(b) {M |L(M) = Σ∗} is S2 recursive Create MS1 that searches for x /∈ L(M). The
S1 oracle answers if a given x is or is not in L(M). If MS1 finds an x not in
L(M) it stops, otherwise it runs forever. Use S2 to determine if MS1 stops.

5. (a) {MS2|L(MS2) 6= Φ} is S2 r.e. Run MS2 on longer and longer inputs for more
and more steps looking for x that is accepted.

(b) {MS1|L(MS1) 6= Σ∗} is S2 r.e. Look at longer and longer x using S2 to de-
termine if x ∈ L(MS1). If we find string halt and say yes. Otherwise run
forever.

(c) {M |L(M) is a regular set} is S2 r.e.
Cycle through all regular sets.
For each regular set R ask if L(M) = R.
To do this cycle through all x

ask is x in L(M) using S1.
ask if x is found proving L(M) 6= R by S2. If yes move on to next R

otherwise return yes L(M) is regular.
If regular set found we return yes. Else we run forever. Thus S2 r.e.

5

