1. Is the collection of all finite cardinality sets of finite length strings of 0 's and 1 's countably or uncountably infinite? What about the collection of all sets of finite length strings of 0 's and 1 's? This second collection of sets contains infinite cardinality sets of finite length strings. Prove your answers to the both questions.
2. Create a nondeterministic finite automaton to accept all strings of 0 's and 1 's that start and end in the same symbol and convert the nfa in to a dfa.
3. Describe in English the set of strings $\left\{10^{n} 10^{n} \mid n \geq 1\right\}^{*}$. List all strings in the set of length ten or less.
4. Let $S=\left\{10^{n} 10^{n+1} \mid n \geq 1\right\}$. What is the set $10 S^{*} \cap S^{*} 10^{*}$?
5. Using $S_{1}=\left\{10^{n} 10^{n+1} \mid n \geq 1\right\}$ and $S_{2}=\left\{10^{n} 10^{2 n} \mid n \geq 1\right\}$, write an expression for the set

$$
S=\left\{1010^{2} 10^{3} 10^{6} 10^{7} 10^{14} \cdots 10^{2^{n+1}-1} \mid n \geq 1\right\} \cup\left\{1010^{2} 10^{3} 10^{6} 10^{7} 10^{14} \cdots 10^{2^{n+2}-2} \mid n \geq 1\right\}
$$

Each odd numbered block of 0 's has one more 0 than the previous block and each even numbered block of 0's has twice as many 0's as the previous block. The last block has $3,6,7,14,15,30, \ldots$, number of 0 's.

