PDA and CFG Example

Shir Maimon

October 2018

We will show that the complement of the set $\{xx|x \in \{a,b\}^*\}$ is context free. We will do this by giving a grammar for the language. The complement of the set can also be written as $\{w|w \text{ is of odd length}\} \cup \{xy|x,y \in \{a,b\}^*,|x|=|y|, \text{ and } x \neq y\}.$

Note that for x, y where |x| = |y| and $x, y \in \{a, b\}^*$, $x \neq y$ is equivalent to there existing some index i such that the ith character of x is different from the ith character of y, which is in turn equivalent to

$$xy \in \Sigma^i a \Sigma^j \Sigma^i b \Sigma^j \cup \Sigma^i b \Sigma^j \Sigma^i a \Sigma^j = \Sigma^i a \Sigma^i \Sigma^j b \Sigma^j \cup \Sigma^i b \Sigma^i \Sigma^j a \Sigma^j$$

for some i, j. Here $\Sigma = \{a, b\}$. Now we can build our grammar.

$$S \rightarrow S_1 | S_2$$

$$S_1 \rightarrow X | X X S_1$$

$$S_2 \rightarrow T_a T_b | T_b T_a$$

$$T_a \rightarrow X T_a X | a$$

$$T_b \rightarrow X T_b X | b$$

$$X \rightarrow a | b$$

Here S_1 accepts strings of odd length. T_a produces $\Sigma^i a \Sigma^i$ for all i, and T_b produces $\Sigma^j b \Sigma^j$ for all j. Thus S_2 produces $\Sigma^i a \Sigma^i \Sigma^j b \Sigma^j \cup \Sigma^i b \Sigma^i \Sigma^j a \Sigma^j$ for all i, j, so S produces $\{w|w \text{ is of odd length}\} \cup \{xy|x, y \in \{a, b\}^*, |x| = |y|, \text{ and } x \neq y\}$, which is the complement of $\{xx|x \in \{a, b\}^*\}$.

Note that for the complement of the set $\{xcx|x \in \{a,b\}^*\}$, it is not sufficient to simply put a c between T_a and T_b in the S_2 production. This will not accept things like abbcbbb.

The PDA is on the next page.

We will build the pushdown automata with the same logic. Note that I use a|b in my PDA to read a character. This isn't really allowed, but I just mean that the rule is the same if we are reading an a or a b. You should not do this on your homeworks or tests.

First, we nondeterministically choose either odd length (q_1) or unequal first and second half (q_3) . The former path should be clear.

For the bottom path, while looping on q_3 , we first read in some number, say i characters, and push i X's onto the stack. We then read either an a or b and transition to state q_4 or q_7 respectively. Suppose we read an a and transition to q_4 . Then we loop on q_4 , reading characters and popping X's off of the stack until there are none, meaning we have read another i characters. Thus at this point, we have read $\Sigma^i a \Sigma^i$.

Once all of the X's are popped, we can transition to q_5 (because we see the S on the stack). Again, we read some number of characters, say j, and push j X's onto the stack. Now we read a b to transition to q_6 . While looping at q_6 , we read characters and pop X's until we reach the bottom of the stack, meaning we have read another j characters. Thus in order to successfully reach q_10 and accept, we have to have read $\sum_{i=1}^{j} a \sum_{i=1}^{j} b \sum_{i=1}^{j} a \sum_{i=1}^{j} b \sum_{i=1}^{j} a \sum_{i=1}^{j$

Similarly, by using q_7 , we accept strings of the form $\Sigma^i b \Sigma^i \Sigma^j a \Sigma^j$. Based on our earlier description of the language, we can see why the PDA accepts the complement of the set $\{xx|x \in \{a,b\}^*\}$.

