Your homework will be graded on the neatness of your write up as well as its correctness.

1. The pumping lemma states that if L is a cfl, there exists an integer n such that for $z \in L,|z|>n, z$ can be written $z=u v w x y$ where $|v w x| \leq n, v x \neq \epsilon$ and $u v^{i} w x^{i} y \in L$. Assume there is a cfg in Chomsky Normal Form for L with s variables. Write a careful proof of the pumping lemma and specify the integer n in terms of the number of variable s in the Chomsky Normal Form grammar. Make sure you inequalities are correct.
2. Write a proof that every context-free language over a one symbol alphabet is a regular set. Your write up should be of the quality of material submitted to a journal for publication and will be graded on the quality of exposition and writing.
3. Create context-free grammars G_{1} and G_{2} such that

$$
L\left(G_{1}\right) \cap L\left(G_{2}\right)=\left\{1010^{2} 10^{3} 1 \cdots 10^{i} 1 \mid i \geq 1\right\}
$$

4. Explain how you would prove that the class of context-free languages is closed under inverse homomorphisms. A few sentences are sufficient to convince us that you could write out a proof.
5. Is $\left\{a^{i} b^{j} c^{k} \mid i>j+k\right.$ or $\left.j=k\right\}$ a context-free language? Provide a proof that your answer is correct.
