
Learning on GPUs
and

ML Accelerators
CS4787/5777 Lecture 25 — Fall 2023



Recap: ML on Hardware

• Over the past three lectures, we've been talking about 
the architecture of the CPU and how it affects 
performance of machine learning models.
• However, the CPU is not the only type of hardware that 

machine learning models are trained or run on.
• In fact, most modern DNN training happens not on 

CPUs but on GPUs.
• In this lecture, we'll look at why GPUs became 

dominant for machine learning training, and we'll 
explore what makes their architecture uniquely well-
suited to large-scale numerical computation.



Modern ML Hardware

• CPUs
• GPUs

• FPGAs
• Specialized accelerators

Right now, GPUs are dominant for ML training...we'll get to why later



What does the modern ML pipeline look like?

• It's not just training a neural network.



What does the modern ML pipeline look like?

• The pipeline has many different components



Where can hardware help?



Everywhere!

There’s interest in hardware everywhere in the pipeline
• both adapting existing hardware architectures, and
• developing new ones

Active Learning Q: What improvements can we get?
• Lower latency inference

• To be able to make real-time predictions
• Higher throughput training

• To train on larger datasets to produce more accurate models
• Lower power cost

• Especially important as data and model sizes scale



How can hardware help?

Speed up the basic building blocks of machine learning
• Major building block: matrix-matrix multiply
• Other major building blocks: convolution, attention

Add data/memory paths specialized to machine learning 
computations and workloads
• Example: having a local cache to store network weights
• Create application-specific functional units
• Not for general ML, but for a specific domain



Why are GPUs so popular for 
machine learning?



Why are GPUs so popular for 
training deep neural networks?
To answer this...we need to look at GPU architectures.



A brief history of GPU computing

• GPUs were originally designed to support the 3D 
graphics pipeline, driven by demand for videogames 
with ever-increasing graphical fidelity.



Important properties of 3d graphics rendering:

• Lots of opportunities for parallelism
• rendering different pixels/objects in the scene can be done 

simultaneously
• Lots of numerical computations
• 3d rendering is based on geometry
• Mostly polygons in space which are transformed, animated, 

and shaded
• All of this is numerical computation: mostly linear algebra



GPU computing history (continued)

• The first era of GPUs ran a fixed-function graphics 
pipeline. They weren't programmed, but instead just 
configured to use a set of fixed functions designed for 
specific graphics tasks: mostly drawing and shading 
polygons in 3d space.
• Even these GPUs were a little programmable via OpenGL calls, 

but you couldn’t program them…in the sense of writing an 
ordinary imperative program that would run there



Programmable GPUs

In the early 2000s, there was a shift towards 
programmable GPUs.
• Programmable GPUs allowed customization certain 

stages in the graphics pipeline by writing small 
programs called shaders which let developers process 
the vertices and pixels of the polygons they wanted to 
render in custom ways.
• And there was powerful economic incentive for 

hardware designers to increase the throughput of these 
GPU shaders so that game designers could render 
models with more polygons and higher resolution.



What did shaders need from hardware?

• These shaders needed to be capable of very high-
throughput parallel processing
• So that they could process and render very large numbers of 

polygons in a single frame of a 3d animation.
• Intuition: if I am rendering multiple independent objects in a 

scene, I can process them in parallel.
• The shaders also needed high throughput to high 

latency texture memory
• Texture memory accesses are essentially random
• Needed lots of parallel contexts to be able to hide that latency



GPU Parallelism

• The GPU supported parallel programs that were more 
parallel than those of the CPU.
• Unlike multicore CPUs, which supported computing 

different functions at the same time, the GPU computes the 
same function on multiple elements of data.
• Example application: want to render a large number of triangles, 

each of which is lit by the same light sources.
• Example application: want to transform all the objects in the scene 

based on the motion of the player. That is, the GPU could run the 
same function on a bunch of triangles in parallel, but couldn't easily 
compute a different function for each triangle.



GPU Memory

• The GPU needed high bandwidth access to large 
texture memory to draw textures on models in real time.
• This memory has high latency

• Unlike multicore CPUs, which have deep cache 
hierarchies, the GPU used parallelism to hide latency
• Example application: when a shader reaches a lookup into 

texture memory, the GPU “core” will request the data; while 
the request is resolving, it runs other threads.
• But actually switching to an independent program would be 

too expensive, so instead it does same program/different data



GPU Computing and Types of Parallelism

Two types of parallelism:
• Data parallelism involves the same operations being 

computed in parallel on many different data elements.
• Task parallelism involves different operations being 

computed in parallel
• on either the same data or different data

Active Learning Question: How are the types of 
parallelism we've discussed categorized according to 
this distinction?
• SIMD/Vector parallelism?
• Multi-core/multi-thread parallelism?
• Distributed computing?



The general-purpose GPU

• Eventually, people started to use GPUs for tasks other than 
graphics rendering.
• However, working within the structure of the graphics 

pipeline of the GPU placed limits on this.
• OpenGL is great for graphics, but annoying for ML

• To better support general-purpose GPU programming, in 
2007 NVIDIA released CUDA, a parallel programming 
language/computing platform for general-purpose 
computation on the GPU.
• Other companies (e.g. Intel/AMD) have competing products as well.

• Now, programmers no longer needed to use the 3d graphics 
API to access the parallel computing capabilities of the GPU.



A Revolution in GPU Computing

Several new applications:

• Training deep neural networks
• Cryptocurrencies

All based on running small highly parallel programs 
called “kernels” on the GPU.
• Not to be confused with the kernels of kernel learning!



An Illustration of CUDA

This syntax launches N threads, each of which 
performs a single addition.



It’s straightforward to implement other ops



The general-purpose GPU: upsides

• Importantly, spinning up hundreds or thousands of 
threads like this could be reasonably fast on a GPU, 
while on a CPU this would be way too slow due to the 
overhead of creating new threads.
• Because GPU threads run the same program, so they share 

resources for their program context

• Additionally, GPUs support many many more parallel 
threads running than a CPU.
• Typical thread count for a GPU: tens of thousands.
• Typical thread count for a CPU: at most a few dozen.



The general-purpose GPU: downsides

• Important downside of GPU threads of this type: they're 
data-parallel only.
• You couldn’t direct each of the individual threads to "do its 

own thing" or run its own independent computation

• Importantly: more modern GPUs now support some 
level of task-parallelism.
• Threads are bound together into "warps" (of ~32 threads) that 

all (conditionally) execute the same instruction.
• But threads in different warps have limited ability to run 

independently.



Summary: GPU vs CPU

• CPU is a general purpose processor
• Modern CPUs spend most of their area on deep caches
• This makes the CPU a great choice for applications with 

random or non-uniform memory accesses

• GPU is optimized for
• more compute intensive workloads
• streaming memory models

Machine learning workloads are compute intensive 
and often support streaming data flows.



FLOPS: GPU vs CPU



Memory Bandwidth: GPU vs CPU

• GPUs have higher memory bandwidths than CPUs
• NVIDIA A100 80GB GPU has 2 TB/s memory bandwidth
• Whereas an Intel Xeon Platinum CPU has only about 120 GB/s 

memory bandwidth at about the same time

• But, this comparison is a bit unfair!
• GPU memory bandwidth is the bandwidth to GPU memory
• e.g. on a PCIE2, bandwidth to system memory was only 32 

GB/s for a GPU



What limits deep learning?

•Active learning question: Is deep 
learning more compute bound or 
more memory bound?
• i.e. is it more limited by the 
computational capabilities or memory 
capabilities of the hardware?



What limits deep learning?

• Ideally: for MLPs it's compute bound
• Why? Matrix-matrix multiply over n x n matrices takes O(n^2) 

memory but O(n^3) compute
• So as we scale wider, costs will be dominated by that compute

• But often it is memory/communication bound
• When we are doing convolutions with small filter sizes, compute 

becomes less dominant
• Especially when we have to load a lot of data
• Especially when we are running at large scale on a cluster
• Especially for transformers
• Especially when data/models do not fit in caches on the hardware



GPUs in machine learning

• Because of their high data parallelism, GPUs provide an 
ideal substrate for large-scale numerical computation.
• In particular, GPUs can perform matrix multiplies very fast.
• Just like BLAS on the CPU, there's an optimized library from NVIDIA 

"cuBLAS" that does matrix multiples efficiently on their GPUs.
• There's even a specialized library of primitives designed for deep 

learning: cuDNN.

• Machine learning frameworks, such as TensorFlow and 
PyTorch, are designed to support computation on GPUs.
• And training a deep net on a GPU can decrease training time by an 

order of magnitude.

How do ML frameworks support GPU computing?



Machine Learning Frameworks and GPUs
A core feature of ML frameworks is GPU support. Approach:

• Represent the compute graph as linear-algebra operations.
• For each operation, call a hand-optimized kernel that 

computes that op on the GPU.
• i.e. matrix-matrix multiply
• i.e. convolution for a CNN

• When GPU code is not available for an op, run it on the CPU
• but this happens rarely, only with uncommon architectures

• Stitch those ops together by calling them from Python
• and eventually make the results available back on the CPU



So should we always use GPUs?

Will we always use GPUs?
Maybe not!



Challengers to the GPU
• More compute-intensive CPUs

• Like Intel’s Phi line — promise same level of compute performance 
and better handling of sparsity

• Low-power devices
• Like mobile-device-targeted chips

• Configurable hardware like FPGAs and CGRAs
• Accelerators that speed up matrix-matrix multiply

• Like Google's Version 1 TPU
• Accelerators special-designed to accelerate ML 

computations beyond just matrix-matrix multiply
• Version 2/3 TPUs

• Many competitors in this space



ML Accelerators



Effect of Hardware on Statistical Performance
• Sometimes, when we change device, we expect the same 

results: same learned model, same accuracy. But this is not 
always the case. Why?

• One reason: FP arithmetic is not associative, so reordering to 
get better performance on different hardware can change 
the results slightly!
• This can even be the case for multiple runs on the same hardware.

• Another reason: randomness.
• Different hardware platforms could use different pseudo-random 

generators or use random numbers in a different order. 
• Another reason: hardware can do approximation to trade-off 

precision for hardware efficiency.
• E.g. if the hardware runs on 16-bit floats, it can give different results.



Effect of Hardware on Statistical Performance

• Sometimes, when we change device, we expect the 
same results: same learned model, same accuracy. But 
this is not always the case. Why?

• Generally, we expect specialized ML hardware to 
produce learned models that are similar in quality, 
but not necessarily exactly the same, as baseline 
chips (CPU/GPU).



Programming ML Hardware

• One major issue when developing new hardware for ML, and 
the question we should always be asking: how is the device 
programmed?
• To be useful for DNN applications, we should be able to map 

a high-level program written in something like TensorFlow / 
PyTorch / MxNet / Keras to run on the hardware.
• Ideal scenario: users don't need to reason about the hardware that 

their code is running on. They just see the speedup.
• Currently: users still need to give some thought to the hardware.
• E.g. if the accelerator uses low-precision arithmetic, the performance 

of an algorithm in full precision on a CPU may differ from the 
performance of the algorithm in low-precision on the accelerator.

• But it is possible to get TensorFlow/PyTorch code to run on an 
accelerator with minimal modifications!



GPU as ML accelerator

• The only real distinction between GPUs and ML accelerators 
is that GPUs weren't originally designed for AI/ML.
• But there's nothing in the architecture that separates GPUs from all 

purpose-built ML accelerators.
• ...although individual accelerators do usually have features 

that GPUs lack.
• As ML tasks capture more of the market for GPUs, GPU 

designers have been adjusting their architectures to fit ML 
applications.
• For example, by supporting low-precision arithmetic. 

• As GPU architectures become more specialized to AI tasks, it 
becomes more accurate to think of them as ML accelerators.



FPGA as ML accelerator

• All computer processors are basically integrated circuit: 
electronic circuits etched on a single piece of silicon.

• Usually this circuit is fixed when the chip is designed.

• A field-programmable gate array or FPGA is a type of 
chip that allows the end-user to reconfigure the circuit it 
computes in the field (hence the name).



FPGA as ML accelerator (continued)
FPGAs consist of an array of programmable circuits that can each 
individually do a small amount of computation, as well as a 
programmable interconnect that connects these circuits together. 
The large number of programmable gates in the FPGA makes it a 
naturally highly parallel device.

• You can program it by specifying the circuit you want it to 
compute in terms of logic gates: basic AND, OR, NOT, etc.
• Although in practice higher-level languages like Verilog are used.

• This doesn't actually involve physical changes to the circuit that's 
actually etched on the physical silicon of the FPGA: that's fixed. 
Rather, the FPGA constructs a logical circuit that is 
reconfigurable.
• FPGAs were used historically for circuit simulation.



Why would we want to use an FPGA 
instead of a GPU/GPU?

• An important property of FPGAs that distinguishes 
them from CPUs/GPUs: you can choose to have data 
flow through the chip however you want!
• Unlike CPUs which are tied to their cache-heirarchy-based 

data model, or GPUs which perform best under a streaming 
model.

• FPGAs often use less power to accomplish the same 
work compared with other architectures.
• But they are also typically slower.



Why would we want to use an FPGA 
instead of an ASIC?

• Pro for FPGA: Much cheaper to program and FPGA than the 
design an ASIC.
• Pro for FPGA: A single FPGA costs much less than the first 

ASIC you synthesize.
• Pro for FPGA: FPGA designs can be adjusted on the fly.
• Pro for ASIC: The marginal cost of producing an additional 

ASIC is lower if you really want to synthesize millions or 
billions of them.
• Pro for ASIC: ASICs can typically achieve higher speed and 

lower power.



Users of FPGAs for Machine Learning

e.g. Microsoft's Project Capatult/Project Brainwave.

from the paper "Serving DNNs in RealTime at Datacenter Scale with Project Brainwave"



An example of a designed-for-ML accelerator
The Tensor Processing Unit (TPU)
Google's Tensor Processing Unit (TPU) in 2015 was one of the first 
specialized architectures for machine learning and AI applications.
• The original version focused on fast inference via high-

throughput 8-bit arithmetic.
• Most of the chip is dedicated to accelerating 8-bit integer 

dense-matrix-dense-matrix multiplies
• Note that even though the numbers it multiples are in 8-bit, it uses 32-bit 

accumulators to sum up the results.
• This larger accumulator is common in ML architectures that use low 

precision.
• ...with a little bit of logic on the side to apply activation functions. 

The second- and third-generation TPUs are designed to also 
support training and can calculate in float/bfloat16.



Now ML 
accelerators 
are found in 
the cloud!



How do we program a TPU

• Essentially the same as for a GPU

• Google supports running ML kernels on TPUs. 
• A TPU is just another accelerator the ML framework can 

compute on and store data on
• This makes it (relatively) easy to train and infer deep neural 

networks using tools you're already familiar with.



Hybrid Systems

• Recent systems-on-a-chip 
developed for personal 
devices (laptops, phones) 
now tend to include AI 
accelerators.
• You can think of this as like a 

CPU+GPU combo

• Examples include the M1 and 
M2 chips from Apple.

M2_chip_layout.png



How to choose your accelerator?

• Different accelerators provide different trade-offs

• Need to ask yourself some questions
• Am I running training or inference?
• What is my budget?
• Where am I running? Am I limited to one cloud provider? Am I 

running on an edge device?
• What did other people with similar tasks use?
• Do I care more about throughput or latency? Or energy?


