
Lecture 18: Gaussian Processes and Bayesian
Optimization

CS4787/5777 — Principles of Large-Scale Machine Learning Systems

Hyperparameter optimization continued.

We want to optimize a function f : X → R over some set X (here the set X is the set of hyperparameters we
want to search over, not the set of examples). But f is expensive to compute, making optimization difficult.
Main idea of Bayesian optimization:

• Model f as a probability distribution.

• If we’ve computed f at parameter values x1, x2, . . . , xD, then we consider f(x1), f(x2), . . . , f(xD) to
be observed variables in the model.

• Any x that we haven’t computed f(x) for corresponds to a hidden variable in the model.

• Key insight: even though we haven’t computed f(x), the probabilistic model that we defined lets us
compute the conditional distribution

P (f(x)|f(x1), f(x2), . . . , f(xD)) .

We want to choose the probabilistic model such that this is much cheaper to compute than f(x) itself.

• We can use this conditional distribution to estimate f(x) for values of x we haven’t observed yet.

• We can also use this conditional distribution to choose the next value of x we are going to compute
f(x) at as we continue optimizing.

• Key benefit of Bayesan optimization: uses all the information from previous computations of f(x)
to choose the next point to evaluate, rather than just using information from the last or last few
computations, as is done with methods like GD and Momentum.

Two major design decisions for Bayesian optimization:

• The prior: the probability distribution over functions that we use. This encodes our assumptions
about the function f .

– The standard way to do this is with a Gaussian process prior.

• The acquision function: how we select the next point to sample, given a conditional distribution
over the values of f(x).

– Many ways to do this, as we’ll see.

Review: Gaussian processes. Recall: the multivariate Gaussian distribution in d dimensions with mean
µ ∈ Rd and covariance matrix Σ ∈ Rd×d has probability density function

P (X) =
1√

(2π)k |Σ|
· exp

(
−1

2
(X − µ)TΣ−1(X − µ)

)
;

from here it is easy to check that E [X] = µ and E
[
XXT

]
= Σ. This is the natural multidimensional

analog of the one-dimensional Gaussian distribution you are familiar with. In order for this definition to
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work, we need the covariance matrix Σ to be positive semidefinite (it is, after all a covariance matrix, and
all covariance matrices are positive semidefinite). Just to see why: for any fixed vector u ∈ Rd

uTΣu = uTE
[
XXT

]
u = E

[
uTXXTu

]
= E

[
(XTu)2

]
≥ 0.

The average of independent vector-valued random variables tends to converge towards a multivariate Gaus-
sian distribution in the same way that the average of independent scalar-valued random variables tends to
converge towards a Gaussian distribution in one dimension. This is called the Multidimensional Central
Limit Theorem and it’s a natural extension of the 1-D CLT you all know and love. When we are doing hy-
perparameter optimization to minimize some empirical risk, that empirical risk evaluated at many different
points is the average of a bunch of component loss functions. That is,f(x1)

...
f(xD)

 =
1

n

n∑
i=1

fi(x1)
...

fi(xD)


so it’s natural to suspect that this vector of empirical risk values would be approximately Gaussian dis-
tributed. So, we’d like to use a multidimensional Gaussian distribution as the prior for Bayesian optimiza-
tion. The problem: there are usually infinitely many possible settings for the hyperparameters (i.e. X is an
infinite set in most cases). And multivariate Gaussian distributions assume a finite number of dimensions.
The solution to this is to use what’s called a Gaussian process: this is the natural infinite-dimensional ana-
log of the multidimensional Gaussian. Typically, we use the all-zeros vector for the mean µ, and replace the
covariance matrix Σ with a Kernel function K.1 If f is the function we’re modeling, then this is equivalent
to assuming that for any xi and xj ∈ X ,

E [f(xi)] = 0 and E [f(xi) · f(xj)] = K(xi, xj).

Importantly, here this expected value represents an expectation over our belief about what the value of the
function f is, not an expectation over the random sampling of the dataset or any randomness that may exist
in our training algorithm.

Why does this function have to be a kernel? Recall that kernels had two properties: symmetry and
positive semidefiniteness. The symmetry here is needed because the expression f(xi) · f(xj) is symmetric.
And the positive semidefiniteness is needed because any covariance matrix must be positive semidefinite
(even, it turns out, if it is infinite-dimensional).

Important property of Gaussian processes. The marginal distribution of a finite number of variables
of a Gaussian process is a multivariate Gaussian distribution. That is, if f is a Gaussian process, then for
any x1, x2, . . . , xD ∈ Xf(x1)

...
f(xD)

 is multivariate-Gaussian-distributed with mean µ = 0

and covariance Σ =

K(x1, x1) K(x1, x2) · · · K(x1, xD)
...

...
. . .

...
K(xD, x1) K(xD, x2) · · · K(xD, xD)

 . (1)

In particular, this lets us find the marginal distribution of f(x∗) at a new test value x∗ conditioned on the
values of the function f we’ve already observed. Explicitly, if we define Σ as above in (??), define the vector
k∗ as

k∗ =
[
K(x1, x∗) K(x2, x∗) · · · K(xD, x∗)

]T
,

1Now you see why I brought kernels back up in the last lecture.
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and if y =
[
y1 y2 · · · yD

]T
is the vector of observations we’ve made so far then we can write the marginal

distribution of f(x∗) as

f(x∗)|(f(x1) = y1, f(x2) = y2, · · · , f(xD) = yD) ∼ N (kT
∗ Σ

−1y,K(x∗, x∗)− kT
∗ Σ

−1k∗)

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.

What is the computational cost of computing the mean and variance of these marginal distri-
butions for N different test points x∗? How much memory is needed? Suppose that the kernel
function K takes Θ(d) time to compute (for some constant d).

Gaussian processes as a prior for Bayesian optimization. To use a Gaussian process for Bayesian
optimization, just let the domain of the Gaussian process X be the space of hyperparameters, and define
some kernel that you believe matches the similarity of two hyperparameter assignments. Typically, you want
to set the kernel based on your intuition about the problem. You can also set it based on prior work in
the literature...as usual the kernel can become another hyperparameter (or hyper-hyperparameter) you need
to set. Then the Gaussian process can be used as a prior for the observed and unknown values of the loss
function f (as a function of the hyperparameters).

Bayesian optimization.

Algorithm 1 Bayesian optimization with Gaussian process prior

input: loss function f , kernel K, acquisition function a, loop counts Nwarmup and N
▷ warmup phase
ybest ←∞
for i = 1 to Nwarmup do

select xi via some method (usually random sampling)
compute exact loss function yi ← f(xi)
if yi ≤ ybest then

xbest ← xi

ybest ← yi
end if

end for
for i = Nwarmup + 1 to N do

update kernel matrix Σ ∈ Ri×i according to (??)
let µ(x∗) and σ(x∗) denote the expected value and standard deviation, respectively, of f(x∗) under the

Gaussian process model, conditioned on all the previous observations of f(xi) = yi
xi ← argminx∗ a(µ(x∗), σ(x∗), ybest)
compute exact loss function yi ← f(xi)
if yi ≤ ybest then

xbest ← xi

ybest ← yi
end if

end for
return xbest
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The acquisition function. Determines how we search for new points. There are a few common acquisision
functions that are used for machine learning. For a Gaussian process prior, they are generally a function
of three things: the mean of the hidden variable f(x∗), the standard deviation of f(x∗), and the best value
seen so far during optimization, ybest.

Probability of improvement. The probability of improvement (PI) acquisition function asks us to max-
imize the probability that we will observe an improvement from the next point searched. That is, it tries to
maximize the probability that the xi that we test will be our new “best” xi. This probability is

P (f(x∗) < ybest) = P

(
f(x∗)− µ(x∗)

σ(x∗)
<

ybest − µ(x∗)

σ(x∗)

)
= Φ

(
ybest − µ(x∗)

σ(x∗)

)
,

where Φ is the cumulative distribution function of the standard Gaussian distribution. Since we’re trying to
maximize this, we can use the negation of this in the Bayesian optimization algorithm as an activation func-
tion (alternatively, we could not negate and just maximize instead of minimize in the Bayesian optimization
algorithm description—it’s equivalent).

aPI(ybest, µ, σ) = −Φ
(
ybest − µ

σ

)

Expected improvement. The expected improvement (EI) acquisition function asks us to minimize the
expected improvement in the value of the new ybest after the next point is searched. This expected value is

E [min(f(x∗)− ybest, 0)] = E

[
min

(
f(x∗)− µ(x∗)

σ(x∗)
− ybest − µ(x∗)

σ(x∗)
, 0

)]
· σ(x∗).

To simplify this further, we need an expression for Eu [min(u− c, 0)] when u is standard-Gaussian-distributed
i.e. u ∼ N (0, 1). We can get this by solving the integral, where ϕ is the probability distribution function of
the Gaussian distribution.

Eu [min(u− c, 0)] =

∫ c

−∞
(u− c) · ϕ(u) du = [−ϕ(u)− c · Φ(u)]c−∞ = −ϕ(c)− c · Φ(c).

It follows that we can let our acquisition function be

aEI(ybest, µ, σ) = −
(
ϕ

(
ybest − µ

σ

)
+

ybest − µ

σ
· Φ
(
ybest − µ

σ

))
· σ.

Once again this is an exact expression we can compute easily from µ, σ, and ybest.

Lower confidence bound. Another common type of activation function is the lower confidence bound
activation function, which is designed to minimize regret over the course of optimization. For some parameter
κ (not the condition number!) this activation function is defined as

aLCB(ybest, µ, σ) = µ− κ · σ.

Here, the parameter κ trades off between exploration and exploitation. A small κ leads to more exploitation,
whereas a large κ explores more high-variance points at which less is known about the value of the function.

To think about as we leave off: what are the main computational costs of hyperparameter
optimization? Which aspects of the system still need to be determined before we can actually run this
algorithm in practice?

Despite its nice properties, we don’t always use Bayesian optimization all the time. Why?
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• Sensitivity to choice of kernel—need to choose good hyperparameters for kernel

• Need to solve the inner optimization problem efficiently somehow—not clear how to do this

• Difficulty with scaling—scary cubic terms in the computational complexity

• Default setup doesn’t handle varying cost to compute objective—but we can see substantial variation
here in practice, especially when we are exploring systems parameters

Kernel selection. Choosing a good prior is very important for the performance of Bayesian optimization.
We want to choose a kernel that is effective for machine learning. We could just use the RBF kernel,

KRBF(x, y) = exp
(
γ · ∥x− y∥2

)
.

But imagine we were trying to optimize, say, the momentum and the number of hidden units in a layer.
What problem might we have?

One way to address hyperparameter scaling is to use the automatic relevance determination (ARD) squared-
exponential kernel. This is defined, for x, y ∈ Rd, as

KARD(x, y) = θ0 · exp
(
−1

2
r2(x− y)

)
where r2(x− y) =

d∑
i=1

(xi − yi)
2

θ2i
.

Here, θ0, θ1, . . . , θd are hyperparameters of the kernel (we can think of these as hyper-hyperparameters).
How does this help with hyperparameter scaling?

For many tasks, the ARD kernel makes predictions that are too smooth to accurately match the true loss
function f . To address this, it’s common to use theMatèrn kernel, which allows for less smooth predictions.
It’s usually written as

KM(ν)(x, y) = σ2 · 2
1−ν

Γ(ν)
·
(
2νr2(x− y)

ρ2

) ν
2

Kν

(√
2νr2(x− y)

ρ2

)
,

where Kν denotes the modified Bessel function of the second kind, and the parameters for this kernel are
ν, σ2, ρ, and the θi from the definition of r above. But this is super messy, so we normally fix a value of ν
(this determines how rough our predictions will be) which allows us to simplify the definition substantially.
It’s common to choose ν = 5/2, in which case the ARD Matèrn 5/2 kernel is given by

KM(5/2)(x, y) = θ0 ·
(
1 +

√
5r2(x− y) +

5

3
r2(x− y)

)
· exp

(
−
√
5r2(x− y)

)
.

Here, the hyperparameters are θ0, θ1, . . . , θd as before for the ARD kernel. Using this lets us both solve the
hyperparameter scaling problem and avoid making predictions that are too smooth.

Choosing the hyper-hyperparameters. One problem with what we just did: now we have a good
kernel that we can use for general problems, but we just added in some hyper-hyperparameters that we
need to set (the θi). Worse, there’s more hyper-hyperparameters than we had hyperparameters, so the
problem seems to have gotten harder! There are a couple of standard ways to try to automatically set these
hyper-hyperparameters.

One way to do it is to use maximum likelihood estimation. We collect a sample of points from f (usually
this is our random sampling we used to warm up the Gaussian process) and find the hyper-hyperparameters θ
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that maximize the probability of observing those points in the Gaussian process model. That is, if we observe
f at D different points x1, . . . , xD and observe it having values y1, . . . , yD, then we select the parameters as

θ = argmax
θ

P (f(x1) = y1, f(x2) = y2, . . . , f(xD) = yD)

where this probability is taken within the Gaussian process model with parameters θ.

Solving the inner optimization problem. To run Bayesian optimization, recall that we needed
to solve the optimization problem

minimize: a(µ(x∗), σ(x∗), ybest)

over: x∗ ∈ X .

How do we solve this? Some ways to do it:

• We usually can differentiate a, so gradient descent is an option. But a is usually non-convex so this
can be tricky.

• Common approach: choose a random starting point and run gradient descent until it converges. Then
choose another random starting point and repeat many times.

Modeling costs. Hypothetical scenario: suppose that the amount of time it takes to compute f varies
by an order of magnitude for different hyperparameters x. We want to minimize f(x) while not spending
too much time on computing f .

A new acquisition function for this setting: expected improvement per-second. Idea: model not only
the value of f but also the time it will take to compute f as a Gaussian process (i.e. we have two Gaussian
processes here). If c(x∗) denotes the predicted compute cost for computing f(x∗) from our Gaussian process,
then the expected improvement per second is

E

[
min(f(x∗)− ybest, 0)

c(x∗)

]
which leads naturally to an acquisition function like

aEI/s(ybest, µ, σ, x∗) = −
(
ϕ

(
ybest − µ

σ

)
+

ybest − µ

σ
· Φ
(
ybest − µ

σ

))
· σ

E [c(x∗)]

What else can we do to incorporate cost into our hyperparameter optimization?
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