
Lecture 13: Neural Networks and Transformers

CS4787/5777 — Principles of Large-Scale ML Systems

Review: Linear models and neural networks. From the homeworks and projects you should all be familiar
with the notion of a linear model hypothesis class. For example, for multinomial logistic regression, we had
the hypothesis class

hW (x) = softmax(Wx).

This is a specific example of a more general linear model of the form

hW (x) = σ(Wx)

for some inputs x ∈ Rd, matrix W ∈ RD×d, and function σ : RD → RD. Many important methods in machine
learning use linear model hypothesis classes, including linear regression, logistic regression, and SVM.

One naive way that we can combine two hypothesis classes is by stacking or layering them. If I have one class
of hypotheses h

(1)
W1

that maps from Rd0 to Rd1 and a second class of hypotheses h
(2)
W2

that maps from Rd1 to
Rd2 , then I can form the layered hypothesis class

hW1,W2(x) = h
(2)
W2

(h
(1)
W1

(x))

that results from first applying h(1) and then applying h(2). Intutively, we’re first having h(1) make a predic-
tion and then using the result of that prediction as an input to h(2) to make our final prediction. If both our
consituent hypothesis classes are linear models, we can write this out more explicitly as

hW1,W2
(x) = σ2(W2 · σ1(W1x)).

Of course, we don’t need to limit ourselves to layering just two linear classifiers. We could layer as many as
we want. For example, if we had L total layers, then our hypothesis would look like

hW1,W2,...,Wl
(x) = σl(Wl · σl−1(Wl−1 · · ·σ2(W2 · σ1(W1x)) · · · )).

We can write this out more generally and explicitly in terms of a recurrence relation.

o0 = x Typical runtime cost:

∀l ∈ {1, . . . ,L}, al = Wl · ol−1 + bl

∀l ∈ {1, . . . ,L}, ol = σl(al)

hW1,b1,W2,b2,...,Wl,bl(x) = oL.

where al, ol ∈ Rdl , and here we’ve also added an explicit bias parameter bl ∈ Rdl to each layer. This type of
model is called a multilayer perceptron (MLP), artificial neural network (ANN), or deep neural network (DNN).
(Specifically, it’s a type of deep neural network called a feedforward neural network.) Here, the functions σl

are called the activation functions and are almost always chosen to operate independently along each
dimension; that is (with abuse of notation)

(σl(x))i = σl(xi).

Note that this is not true for the softmax, but it’s true about pretty much every other major activation
function.

1



Variants of neural networks:

• Residual neural networks include feedback connections in which the outputs of the model are fed back
into itself.

• Convolutional neural networks restrict some of the linear transformations Wl to be members of some
subset of linear transformations, typically convolutions with some filter.

• Recurrent neural networks repeat the same layers to process a sequence.
• Transformers use attention blocks to process sequences and spatially/temporally structured data in a

unified way.

Transformers. Designed to process sequential data, but can generalize to any sort of structured data.

Represents an example as a matrix in Rn×d where n is the sequence length (a.k.a. n “tokens”) and d is
the representation dimension. Most characteristic layer: attention layer (more formally, “Scaled Dot-Product
Attention”). Given input activation matrices Q ∈ Rn×dk (the “query” matrix), K ∈ Rn×dk (the “key” matrix),
and V ∈ Rn×dv (the “value” matrix), the attention layer outputs

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V,

where this softmax applies along the rows of the matrix (i.e. each row of softmax(·) sums to 1). You can
think of this as a “soft” or “weighted” lookup. This formulation lets every token (every sequence element)
look up into every other one: if we want to restrict this, we can use an attention mask M ∈ Rn×n, usually
with elements in {−∞, 0}, and set

MaskedAttention(Q,K, V ) = softmax

(
QKT

√
dk

+M

)
V.

This “zeros out” the entries of softmax(·) for which Mij = −∞.

Multiple attention layers are combined together to form a multi-head attention layer. Such a layer with h
“heads” takes as input tensors Q ∈ Rn×h×dk , K ∈ Rn×h×dk , and V ∈ Rn×h×dv , and outputs a tensor of size
(n× h× dv) such that

MultiHeadAttention(Q,K, V ):,i,: = MaskedAttention(Q:,i,:,K:,i,:, V:,i,:);

that is, it’s just h attention layers running in parallel along the head dimension.

A typical multi-head attention block with representation dimension d and number of heads h (where h evenly
divides d) has dk = dv = d/h and is parameterized by four matrices: WK ∈ Rd×d, WQ ∈ Rd×d, WV ∈ Rd×d

and WO ∈ Rd×d. Given input X ∈ Rn×d, it outputs

MultiHeadAttention(XWT
Q , XWT

K , XWT
V )WT

O

where here we reshape MultiHeadAttention to operate on matrices like Q ∈ Rn×hdk rather than on tensors.

Let’s draw a block diagram of a transformer block.

2


