Lecture 13: Neural Networks and Transformers

CS4787/5777 — Principles of Large-Scale ML Systems

Review: Linear models and neural networks. From the homeworks and projects you should all be familiar with the notion of a linear model hypothesis class. For example, for multinomial logistic regression, we had the hypothesis class

$$
h_{W}(x)=\operatorname{softmax}(W x) .
$$

This is a specific example of a more general linear model of the form

$$
h_{W}(x)=\sigma(W x)
$$

for some inputs $x \in \mathbb{R}^{d}$, matrix $W \in \mathbb{R}^{D \times d}$, and function $\sigma: \mathbb{R}^{D} \rightarrow \mathbb{R}^{D}$. Many important methods in machine learning use linear model hypothesis classes, including linear regression, logistic regression, and SVM.

One naive way that we can combine two hypothesis classes is by stacking or layering them. If I have one class of hypotheses $h_{W_{1}}^{(1)}$ that maps from $\mathbb{R}^{d_{0}}$ to $\mathbb{R}^{d_{1}}$ and a second class of hypotheses $h_{W_{2}}^{(2)}$ that maps from $\mathbb{R}^{d_{1}}$ to $\mathbb{R}^{d_{2}}$, then I can form the layered hypothesis class

$$
h_{W_{1}, W_{2}}(x)=h_{W_{2}}^{(2)}\left(h_{W_{1}}^{(1)}(x)\right)
$$

that results from first applying $h^{(1)}$ and then applying $h^{(2)}$. Intutively, we're first having $h^{(1)}$ make a prediction and then using the result of that prediction as an input to $h^{(2)}$ to make our final prediction. If both our consituent hypothesis classes are linear models, we can write this out more explicitly as

$$
h_{W_{1}, W_{2}}(x)=\sigma_{2}\left(W_{2} \cdot \sigma_{1}\left(W_{1} x\right)\right) .
$$

Of course, we don't need to limit ourselves to layering just two linear classifiers. We could layer as many as we want. For example, if we had \mathcal{L} total layers, then our hypothesis would look like

$$
h_{W_{1}, W_{2}, \ldots, W_{l}}(x)=\sigma_{l}\left(W_{l} \cdot \sigma_{l-1}\left(W_{l-1} \cdots \sigma_{2}\left(W_{2} \cdot \sigma_{1}\left(W_{1} x\right)\right) \cdots\right)\right)
$$

We can write this out more generally and explicitly in terms of a recurrence relation.

$$
\begin{gathered}
o_{0}=x \\
\forall l \in\{1, \ldots, \mathcal{L}\}, \quad a_{l}=W_{l} \cdot o_{l-1}+b_{l} \\
\forall l \in\{1, \ldots, \mathcal{L}\}, \quad o_{l}=\sigma_{l}\left(a_{l}\right) \\
h_{W_{1}, b_{1}, W_{2}, b_{2}, \ldots, W_{l}, b_{l}}(x)=o_{\mathcal{L}} .
\end{gathered}
$$

Typical runtime cost:

where $a_{l}, o_{l} \in \mathbb{R}^{d_{l}}$, and here we've also added an explicit bias parameter $b_{l} \in \mathbb{R}^{d_{l}}$ to each layer. This type of model is called a multilayer perceptron (MLP), artificial neural network (ANN), or deep neural network (DNN). (Specifically, it's a type of deep neural network called a feedforward neural network.) Here, the functions σ_{l} are called the activation functions and are almost always chosen to operate independently along each dimension; that is (with abuse of notation)

$$
\left(\sigma_{l}(x)\right)_{i}=\sigma_{l}\left(x_{i}\right) .
$$

Note that this is not true for the softmax, but it's true about pretty much every other major activation function.

Variants of neural networks:

- Residual neural networks include feedback connections in which the outputs of the model are fed back into itself.
- Convolutional neural networks restrict some of the linear transformations W_{l} to be members of some subset of linear transformations, typically convolutions with some filter.
- Recurrent neural networks repeat the same layers to process a sequence.
- Transformers use attention blocks to process sequences and spatially/temporally structured data in a unified way.

Transformers. Designed to process sequential data, but can generalize to any sort of structured data.

Represents an example as a matrix in $\mathbb{R}^{n \times d}$ where n is the sequence length (a.k.a. n "tokens") and d is the representation dimension. Most characteristic layer: attention layer (more formally, "Scaled Dot-Product Attention"). Given input activation matrices $Q \in \mathbb{R}^{n \times d_{k}}$ (the "query" matrix), $K \in \mathbb{R}^{n \times d_{k}}$ (the "key" matrix), and $V \in \mathbb{R}^{n \times d_{v}}$ (the "value" matrix), the attention layer outputs

$$
\operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V
$$

where this softmax applies along the rows of the matrix (i.e. each row of softmax (•) sums to 1). You can think of this as a "soft" or "weighted" lookup. This formulation lets every token (every sequence element) look up into every other one: if we want to restrict this, we can use an attention mask $M \in \mathbb{R}^{n \times n}$, usually with elements in $\{-\infty, 0\}$, and set

$$
\operatorname{MaskedAttention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^{T}}{\sqrt{d_{k}}}+M\right) V
$$

This "zeros out" the entries of $\operatorname{softmax}(\cdot)$ for which $M_{i j}=-\infty$.

Multiple attention layers are combined together to form a multi-head attention layer. Such a layer with h "heads" takes as input tensors $Q \in \mathbb{R}^{n \times h \times d_{k}}, K \in \mathbb{R}^{n \times h \times d_{k}}$, and $V \in \mathbb{R}^{n \times h \times d_{v}}$, and outputs a tensor of size $\left(n \times h \times d_{v}\right)$ such that

$$
\text { MultiHeadAttention }(Q, K, V)_{:, i,:}=\operatorname{MaskedAttention}\left(Q_{:, i,:}, K_{:, i,:}, V_{:, i,:}\right) ;
$$

that is, it's just h attention layers running in parallel along the head dimension.

A typical multi-head attention block with representation dimension d and number of heads h (where h evenly divides d) has $d_{k}=d_{v}=d / h$ and is parameterized by four matrices: $W_{K} \in \mathbb{R}^{d \times d}, W_{Q} \in \mathbb{R}^{d \times d}, W_{V} \in \mathbb{R}^{d \times d}$ and $W_{O} \in \mathbb{R}^{d \times d}$. Given input $X \in \mathbb{R}^{n \times d}$, it outputs

$$
\text { MultiHeadAttention }\left(X W_{Q}^{T}, X W_{K}^{T}, X W_{V}^{T}\right) W_{O}^{T}
$$

where here we reshape MultiHeadAttention to operate on matrices like $Q \in \mathbb{R}^{n \times h d_{k}}$ rather than on tensors.
Let's draw a block diagram of a transformer block.

