
Lecture 5: Stochastic Gradient Descent

CS4787 — Principles of Large-Scale Machine Learning Systems

Combining two principles we already discussed into one algorithm.

• Principle: Write your learning task as an optimization problem and solve it with a scalable optimization
algorithm.

• Principle: Use subsampling to estimate a sum with something easier to compute.

Recall: we parameterized the hypotheses we wanted to evaluate with parameters w ∈ Rd, and want to solve
the problem

minimize: R(hw) =
1

n

n∑
i=1

L(hw(xi), yi) = f(w) =
1

n

n∑
i=1

fi(w) over w ∈ Rd.

Stochastic gradient descent (SGD). Basic idea: in gradient descent, just replace the full gradient
(which is a sum) with a single gradient example. Initialize the parameters at some value w0 ∈ Rd, and
decrease the value of the empirical risk iteratively by sampling a random index ĩt uniformly from {1, . . . , n}
and then updating

wt+1 = wt − αt · ∇fĩt(wt)

where as usual wt is the value of the parameter vector at time t, αt is the learning rate or step size, and ∇fi
denotes the gradient of the loss function of the ith training example. Compared with gradient descent and
Newton’s method, SGD is simple to implement and runs each iteration faster.

A potential objection: this is not necessarily going to be decreasing the loss at every step! So we can’t
demonstrate convergence by using a proof like the one we used for gradient descent, where we showed that
the loss decreases at every iteration of the algorithm. The fact that SGD doesn’t always improve the loss at
each iteration motivates the question: does SGD even work? And if so, why does SGD work?

Demo. Gradient descent versus stochastic gradient descent on linear regression.
Why might it be fine to get an approximate solution to an optimization problem for training?

Takeaway:

1



Why does SGD work? Unlike GD, SGD does not necessarily decrease the value of the loss at each step.
Let’s just try to analyze it in the same way that we did with gradient descent and see what happens. But
first, we need some new assumption that characterizes how far the gradient samples can be from the true
gradient. Assume that, for some constant σ2 > 0, the mean-squared error of our gradient samples from the
true gradient is bounded, for all w ∈ Rd, by

E
[
‖∇fi(w)−∇f(w)‖2

]
= E

[
‖∇fi(w)‖2

]
− ‖∇f(w)‖2 ≤ σ2.

Here the expectation is taken over a uniform random selection of a component loss function fi. In other
words, since E [∇fi(w)] = ∇f(w), this is a global bound on the variance of the gradient samples. As before,
we will also assume that for some constant L > 0, for all x in the space and for any vector u ∈ Rd,∣∣uT∇2f(x)u

∣∣ ≤ L ‖u‖2 .
From here, we can analyze SGD like we did with gradient descent, first without assuming convexity and using
a constant step size. From Taylor’s theorem, using the same argument as for gradient descent, we can get

f(wt+1) ≤ f(wt)− α∇fĩt(wt)
T∇f(wt) +

α2L

2

∥∥∇fĩt(wt)∥∥2 .
Now we’re faced with a problem. The term

−α∇fĩt(wt)
T∇f(wt)

is not necessarily nonnegative, so we’re not necessarily making any progress in the loss. The key insight: we
are making progress in expectation. If we take the expected value of both sides of this expression (where
the expectation is taken over the randomness in the sample selection ĩt), we get

E [f(wt+1)] ≤ E

[
f(wt)− α∇fĩt(wt)

T∇f(wt) +
α2L

2

∥∥∇fĩt(wt)∥∥2]
≤ E [f(wt)]− αE

[
‖∇f(wt)‖2

]
+
α2L

2

(
σ2 +E

[
‖∇f(wt)‖2

])
= E [f(wt)]−

(
α− α2L

2

)
E
[
‖∇f(wt)‖2

]
+
α2σ2L

2
.

Assuming that αL < 1, we can simplify this to

E [f(wt+1)] ≤ E [f(wt)]−
α

2
E
[
‖∇f(wt)‖2

]
+
α2σ2L

2
.

Rearranging the terms, summing up over T iterations, and telescoping the sum,

E [f(wT )] ≤ E [f(w0)]−
T−1∑
t=0

α

2
E
[
‖∇f(wt)‖2

]
+

T−1∑
t=0

α2σ2L

2

≤ f(w0)−
α

2

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
+
α2σ2LT

2
.

Rearranging and dividing both sides by αT/2, as we did in the analysis of GD, and noticing that f(wT ) ≥ f∗,
where f∗ is the global minimum of f ,

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤ 2 (f(w0)− f∗)

αT
+
ασ2L

2
.

The term on the left is the expected squared-norm of the gradient of a point randomly chosen from the
trajectory of SGD.

2



How should we interpret this?

So SGD with constant step size converges to a noise ball!

Even if we run for a very large number of iterations,

lim
T→∞

1

T

T−1∑
t=0

E
[
‖∇f(wt)‖2

]
≤ lim
T→∞

2 (f(w0)− f∗)
αT

+
ασ2L

2
=
ασ2L

2
6= 0.

For many applications this is fine...but it seems somehow lacking.

What if we want an algorithm that actually converges to the optimum? Intuition: for the constant step
size approach, we converge down to a gradient magnitude that is proportional to the step size. So if we use
a decreasing step size scheme, can we get arbitrarily small gradients? That is, we can run the update

wt+1 = wt − αt∇fĩt(wt).

Using the same analysis as before, but with αt in place of α, and assuming that αtL < 1, we can get

E [f(wt+1)] ≤ E [f(wt)]−
αt
2
E
[
‖∇f(wt)‖2

]
+
α2
tσ

2L

2
.

Rearranging the terms, summing up over T iterations, and telescoping the sum,

E [f(wT )] ≤ E [f(w0)]−
T−1∑
t=0

αt
2
E
[
‖∇f(wt)‖2

]
+

T−1∑
t=0

α2
tσ

2L

2
.

If we define τ as being the index of a random output model that is selected at random from a weighted
distribution over the iterates of SGD, such that for t ∈ {0, . . . , T − 1}

P (τ = t) =
αt∑T−1
t=0 αt

,

then

E
[
‖∇f(wτ )‖2

]
=

T−1∑
t=0

αt∑T−1
s=0 αs

·E
[
‖∇f(wt)‖2

]
= 2

(
T−1∑
s=0

αs

)−1
·
T−1∑
t=0

αt
2
E
[
‖∇f(wt)‖2

]

≤ 2

(
T−1∑
s=0

αs

)−1
·

(
E [f(w0)]−E [f(wT )] +

T−1∑
t=0

α2
tσ

2L

2

)
.

The norm of the gradient of the output wτ will be guaranteed to go to zero if

T−1∑
t=0

αt grows much faster than
T−1∑
t=0

α2
t .

One example of such a step size rule is αt = 1
L·
√
t+1

. Then we have

T−1∑
t=0

αt =

T−1∑
t=0

1

L
√
t+ 1

≥
∫ T+1

1

1

L
√
x
dx =

2
(√
T + 1− 1

)
L

and
T−1∑
t=0

α2
t =

T−1∑
t=0

1

L2(t+ 1)
≤ 1 +

∫ T

1

1

L2x
dx =

log(T ) + 1

L2
.

With this, we get

E
[
‖∇f(wτ )‖2

]
≤ 2

(
2
(√
T + 1− 1

)
L

)−1
·
(
E [f(w0)]−E [f(wT )] +

log(T ) + 1

L2

)
= O

(
log(T )

L
√
T

)
.

3



This is indeed going to go to zero as T →∞.

How does this compare to the expression that we got for gradient descent?

Gradient descent for strongly convex objectives. This was without assuming strong convexity.
But how does SGD perform on strongly convex problems? As before, we start from this sort of expression

E [f(wt+1)] ≤ E [f(wt)]−
α

2
E
[
‖∇f(wt)‖2

]
+
α2σ2L

2

and apply the Polyak–Lojasiewicz condition,

‖∇f(x)‖2 ≥ 2µ (f(x)− f∗) ;

this gives us

E [f(wt+1)] ≤ E [f(wt)]− µαE [f(wt)− f∗] +
α2σ2L

2
.

Subtracting f∗ from both sides, we get

E [f(wt+1)− f∗] ≤ (1− µα)E [f(wt)− f∗] +
α2σ2L

2
.

Now subtracting the fixed point from both sides gives us

E [f(wt+1)− f∗]−
α2σ2L

2µα
≤ (1− µα)E [f(wt)− f∗] +

α2σ2L

2
− α2σ2L

2µα

= (1− µα)
(
E [f(wt)− f∗]−

α2σ2L

2µα

)
.

Now applying this recursively,

E [f(wT )− f∗]−
α2σ2L

4µα
≤ (1− µα)K

(
f(w0)− f∗ −

α2σ2L

2µα

)
,

and so since (1− µα) ≤ exp(−µα),

E [f(wT )− f∗] ≤ exp(−µαK) · (f(w0)− f∗) +
ασ2L

2µ
.

What can we learn from this expression?

4


