
Lecture 9: Diminishing step sizes and accelerating SGD
with averaging.

CS4787 — Principles of Large-Scale Machine Learning Systems

Recap: Over the last week, we looked at a couple of ways to accelerate learning by using techniques that help
decrease the dependence on the condition number of the problem κ. One of these methods was AdaGrad,
which we saw had the side effect of decreasing the step size over time. Doing this will cause the algorithm to
converge asymptotically towards having low gradient magnitude, unlike plain constant-step-size SGD which
converges to a noise ball.

Recall that from the Lecture 4 notes, we had that (for strongly convex SGD)

E [f(wT )− f∗] ≤ exp(−µαT ) · (f(w0)− f∗) +
ασ2κ

2
.

Last week, we looked at the effect of the κ term on this and other algorithms; today, we’ll look at the effect
of the α and σ2 parts of the noise ball, and discuss some ways to address the effect of these to accelerate
SGD.

Increasing minibatch sizes. One approach to target the variance term is to use a minibatch size that
becomes larger over time. Here, we’ll look at how this can effect convergence in the non-convex optimization
setting (just to vary our setting from our diminishing step size case, not because either method is particularly
suited to either setting).

If we use a constant learning rate and a minibatch of size Bt at time t, then (from the analysis we did in
Lecture 5), we would get

E [f(wt+1)] ≤ E [f(wt)]−
α

2
·E
[
‖∇f(wt)‖2

]
+
α2L

2
·E



∥∥∥∥∥

1

Bt

Bt∑

b=1

∇fib,t(wt)−∇f(wt)

∥∥∥∥∥

2



︸ ︷︷ ︸
second-order variance/error term

.

If (as we usually assume) the variance of an individual example gradient is bounded by σ2 as

1

n

n∑

i=1

‖∇fi(wt)−∇f(wt)‖2 ≤ σ2,

then by the analysis we’ve already done for minibatch SGD we know that

E [f(wt+1)] ≤ E [f(wt)]−
α

2
·E
[
‖∇f(wt)‖2

]
+
α2σ2L

2Bt

which implies that

α

2
·E
[
‖∇f(wt)‖2

]
≤ E [f(wt)]−E [f(wt+1)] +

α2σ2L

2Bt
.
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Summing this up over T iterations of SGD, and telescoping the sum as usual, we get

α

2

T−1∑

t=0

E
[
‖∇f(wt)‖2

]
≤ E [f(w0)]−E [f(wT )] +

T−1∑

t=0

α2σ2L

2Bt

≤ f(w0)− f∗ +

T−1∑

t=0

α2σ2L

2Bt

which implies that

1

T

T−1∑

t=0

E
[
‖∇f(wt)‖2

]
≤ 2(f(w0)− f∗)

αT
+
ασ2L

T

T−1∑

t=0

1

Bt
.

This means that any increasing batch size scheme is going to converge, and if the sum of the reciprocals of
the batch sizes converges, then SGD with this scheme will converge at a rate of 1/T .

We can do a similar analysis for convex problems...I won’t discuss this in class but there’s a great analysis in
Chapter 5 of “Optimization Methods for Large-Scale Machine Learning” if you are curious.

Polyak averaging. Intuition: SGD is converging to a “noise ball” where the iterates are randomly jump-
ing around some space surrounding the optimum. We can think about these iterates as random samples that
approximate the optimum.

What can we do when we have a bunch of random samples that approximate something to improve
the precision of our estimate?

Technique: run regular SGD and just average the iterates. That is,

wt+1 = wt − αt∇fit(wt)

w̄t+1 =
t

t+ 1
· w̄t +

1

t+ 1
· wt+1;

eventually we output the average w̄T at the end of execution. This is equivalent to writing

w̄T =
1

T

T∑

t=1

wt.

The main idea here is that we’re averaging out a bunch of iterations wt that are all in the noise ball. When
you average out a bunch of noisy things, often you are able to reduce the noise.

To gain intuition about Polyak averaging, let’s look at a simple one-dimensional quadratic...

f(w) =
1

2
w2

with example gradients
∇fi(w) = w + ui

where ui considered as a random variable over all i ∈ {1, . . . , n} has mean 0 and variance σ2, i.e.

1

n

n∑

i=1

ui = 0 and
1

n

n∑

i=1

u2i = σ2.
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Suppose that we run SGD on this with a constant learning rate α. Our update step will be

wt+1 = wt − αwt − αuit = (1− α)wt − αuit .

Applying this recursively, we get

wT = (1− α)Tw0 − α
T−1∑

t=0

(1− α)T−1−tuit

︸ ︷︷ ︸
noise term

.

To tell how basic SGD compares with averaged SGD, we want to compare the expected loss f evaluated at
both these points. For regular SGD, it is

E [f(wT )] =
1

2
E
[
w2

T

]

=
1

2
E



(

(1− α)Tw0 − α
T−1∑

t=0

(1− α)T−1−tuit

)2



=
1

2
E

[(
(1− α)Tw0 − α

T−1∑

t=0

(1− α)T−1−tuit

)(
(1− α)Tw0 − α

T−1∑

s=0

(1− α)T−1−suis

)]

=
1

2

(
(1− α)2Tw2

0 − 2α(1− α)Tw0

T−1∑

t=0

(1− α)T−1−t ·E [uit ]

+ α2
T−1∑

t=0

T−1∑

s=0

(1− α)T−1−t · (1− α)T−1−s ·E [uituis ]

)
.

Now, since the uit are zero mean and independent, it follows that

E [E [uit ]] = 0.

For the same reason, it will also be the case that if s 6= t,

E [uituis ] = 0.

On the other hand, if s = t, then
E [uituis ] = Exvu2it = σ2.

As a result, all the cross terms in the above sum will cancel out to zero, and we can write the expected loss
as

E [f(wT )] =
1

2

(
(1− α)2Tw2

0 + α2
T−1∑

t=0

(1− α)2(T−1−t)σ2

)
.

Next, if we let k = T − 1 − t, then summing from t = 0 to T − 1 is equivalent to summing from k = 0 to
T − 1, so

E [f(wT )] =
1

2

(
(1− α)2Tw2

0 + α2
T−1∑

k=0

(1− α)2kσ2

)

=
1

2

(
(1− α)2Tw2

0 + α2σ2 1− (1− α)2T

1− (1− α)2

)

=
1

2

(
(1− α)2Tw2

0 + ασ2 1− (1− α)2T

2− α

)

= (1− α)2T
(
f(w0)− ασ2

2(2− α)

)
+

ασ2

2(2− α)
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where in the derivation above, we used the fact that for any x,
N−1∑

n=0

xn =
1− xN
1− x .

Note that this expression is exact! We didn’t use any approximations or inequalities here, but if we want a
somewhat simpler expression we can upper bound this with

E [f(wT )] = (1− α)2T · f(w0) +
ασ2

2(2− α)

Now let’s do the same analysis for the Polyak-averaged updates. If we use averaging, the output of the
algorithm becomes

w̄T =
1

T

T−1∑

k=0

(
(1− α)kw0 − α

k−1∑

t=0

(1− α)k−1−tuit

)

=
1

T

(
T−1∑

k=0

(1− α)kw0 − α
T−1∑

k=0

k−1∑

t=0

(1− α)k−1−tuit

)
.

The pair of sums in the second term here results in the value (1− α)k−1−tuit being summed up for all pairs
(k, t) that satisfy

0 ≤ k < T and 0 ≤ t < k.

This condition is equivalent to 0 ≤ t < k < T , and so we could also write it as

0 ≤ t < T − 1 and t < k < T.

That is, these inequalities correspond to the same ordered pairs of (k, t). As a result, we can re-order our
summations above into

w̄T =
1

T

(
T−1∑

k=0

(1− α)kw0 − α
T−2∑

t=0

T−1∑

k=t+1

(1− α)k−1−tuit

)
,

since the resulting expression sums up the exact same terms. Next, if we substitute l = k− 1− t in the inner
sum, then

w̄T =
1

T

(
T−1∑

k=0

(1− α)kw0 − α
T−2∑

t=0

T−t−2∑

l=0

(1− α)luit

)

=
1

T

(
1− (1− α)T

1− (1− α)
· w0 − α

T−2∑

t=0

1− (1− α)T−t−1

1− (1− α)
· uit

)

=
1

T

(
1− (1− α)T

α
· w0 −

T−2∑

t=0

(
1− (1− α)T−t−1

)
· uit

)
.

If we compute the expected value of the loss function f evaluated at this point, then as before, all the cross
terms will cancel, and we’ll just be left with

E [f(w̄T )] =
1

2
E
[
w̄2

T

]

=
1

2
E



(

1

T

(
1− (1− α)T

α
· w0 −

T−2∑

t=0

·
(
1− (1− α)T−t−1

)
· uit

))2



=
1

2T 2

((
1− (1− α)T

α
· w0

)2

+

T−2∑

t=0

(
1− (1− α)T−t−1

)2 ·E
[
u2it
]
)

=
1

2T 2

((
1− (1− α)T

α
· w0

)2

+

T−2∑

t=0

(
1− (1− α)T−t−1

)2 · σ2

)
.
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Next, I’m going to simplify the above expression by noting that for sufficiently small α (i.e. 0 < α ≤ 1) the
term 1− (1− α)T−t−1 ≤ 1, and so

T−2∑

t=0

(
1− (1− α)T−t−1

)2 ≤ T.

Using this, and the fact that 1− (1− α)T ≤ 1, we can get the simplified upper bound

E [f(w̄T )] ≤ 1

2T 2

((
1

α
· w0

)2

+ T · σ2

)

=
w2

0

2α2T 2
+
σ2

2T

=
f(w0)

α2T 2
+
σ2

2T
.

Now, let’s compare our rates. For SGD and averaged SGD, we have

E [f(wT )] ≤ (1− α)2T · f(w0) +
ασ2

2(2− α)
and E [f(w̄T )] ≤ f(w0)

α2T 2
+
σ2

2T
.

When we compare, we notice that the second term (the term that depends on σ2, i.e. the variance term) is
actually going to zero as T increases. That is, even with a constant learning rate α, we can get loss values
that are arbitrarily close to the actual optimal loss f∗ = f(0) = 0. (Unfortunately, this is not guaranteed to
happen for general convex losses, and only happens here because our loss is a quadratic function.) On the
other hand, the term that depends on the initialization w0 (the first term) is no longer decaying exponentially.

One issue with this is that we are averaging with equal weight iterates from the very start of training, when
we have not reached the noise ball. In order to address this, we often run averaged SGD by first using a
warm-up period during which we do not average, and then only starting to average after the warm-up
period is over. Long warm-up periods (such as half of the total number of epochs ran) usually produce better
results in practice than averaged SGD without any warmup.

For Polyak averaging on non-convex problems, we run into the same issue that we ran into with AdaGrad:
as we move through a non-convex landscape, we may get very far away from the parameter values we were
at during previous iterations. If this happens, averaging together with those parameter values doesn’t really
make sense, and can hurt the performance of our algorithm. So, instead, a standard approach is to use an
exponential moving average, just like was done to transform AdaGrad into RMSProp. That is, we pick some
decay factor 0 < ρ < 1 and run

wt+1 = wt − αt∇fit(wt)

w̄t+1 = ρ · w̄t + (1− ρ) · wt+1.

This running average approach often outperforms other averaging methods in non-convex settings.

Stochastic variance-reduced gradient. Idea: reduce the variance of the gradient estimators by using an
infrequent full-gradient step.
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Procedure SVRG

Parameters update frequency m and learning rate ⌘
Initialize w̃0

Iterate: for s = 1, 2, . . .
w̃ = w̃s�1

µ̃ = 1
n

Pn
i=1 r i(w̃)

w0 = w̃
Iterate: for t = 1, 2, . . . , m

Randomly pick it 2 {1, . . . , n} and update weight
wt = wt�1 � ⌘(r it

(wt�1) �r it
(w̃) + µ̃)

end
option I: set w̃s = wm

option II: set w̃s = wt for randomly chosen t 2 {0, . . . , m � 1}
end

Figure 1: Stochastic Variance Reduced Gradient

Proof. Given any i, consider

gi(w) =  i(w) �  i(w⇤) �r i(w⇤)
>(w � w⇤).

We know that gi(w⇤) = minw gi(w) since rgi(w⇤) = 0. Therefore

0 = gi(w⇤) min
⌘

[gi(w � ⌘rgi(w))]

min
⌘

[gi(w) � ⌘krgi(w)k2
2 + 0.5L⌘2krgi(w)k2

2] = gi(w) � 1

2L
krgi(w)k2

2.

That is,
kr i(w) �r i(w⇤)k2

2  2L[ i(w) �  i(w⇤) �r i(w⇤)
>(w � w⇤)].

By summing the above inequality over i = 1, . . . , n, and using the fact that rP (w⇤) = 0, we obtain

n�1
nX

i=1

kr i(w) �r i(w⇤)k2
2  2L[P (w) � P (w⇤)]. (8)

We can now proceed to prove the theorem. Let vt = r it
(wt�1) �r it

(w̃) + µ̃. Conditioned on
wt�1, we can take expectation with respect to it, and obtain:

E kvtk2
2

2 E kr it
(wt�1) �r it

(w⇤)k2
2 + 2 E k[r it

(w̃) �r it
(w⇤)] �rP (w̃)k2

2

=2 E kr it
(wt�1) �r it

(w⇤)k2
2 + 2 E k[r it

(w̃) �r it
(w⇤)]

� E [r it(w̃) �r it(w⇤)]k2
2

2 E kr it
(wt�1) �r it

(w⇤)k2
2 + 2 E kr it

(w̃) �r it
(w⇤)k2

2

4L[P (wt�1) � P (w⇤) + P (w̃) � P (w⇤)].

The first inequality uses ka + bk2
2  2kak2

2 + 2kbk2
2 and µ̃ = rP (w̃). The second inequality uses

E k⇠ � E ⇠k2
2 = E k⇠k2

2 � kE ⇠k2
2  E k⇠k2

2 for any random vector ⇠. The third inequality uses (8).

Now by noticing that conditioned on wt�1, we have E vt = rP (wt�1); and this leads to

E kwt � w⇤k2
2

=kwt�1 � w⇤k2
2 � 2⌘(wt�1 � w⇤)

> E vt + ⌘2 E kvtk2
2

kwt�1 � w⇤k2
2 � 2⌘(wt�1 � w⇤)

>rP (wt�1) + 4L⌘2[P (wt�1) � P (w⇤) + P (w̃) � P (w⇤)]

kwt�1 � w⇤k2
2 � 2⌘[P (wt�1) � P (w⇤)] + 4L⌘2[P (wt�1) � P (w⇤) + P (w̃) � P (w⇤)]

=kwt�1 � w⇤k2
2 � 2⌘(1 � 2L⌘)[P (wt�1) � P (w⇤)] + 4L⌘2[P (w̃) � P (w⇤)].
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