
Lecture 9: Diminishing step sizes and accelerating SGD
with averaging.

CS4787 — Principles of Large-Scale Machine Learning Systems

Recap: Over the last week, we looked at a couple of ways to accelerate learning by using techniques that help
decrease the dependence on the condition number of the problem κ. One of these methods was AdaGrad,
which we saw had the side effect of decreasing the step size over time. Doing this will cause the algorithm to
converge asymptotically towards having low gradient magnitude, unlike plain constant-step-size SGD which
converges to a noise ball.

Recall that from the Lecture 4 notes, we had that (for strongly convex SGD)

E [f(wT)− f∗] ≤ exp(−µαT) · (f(w0)− f∗) +
ασ2κ

2
.

Last week, we looked at the effect of the κ term on this and other algorithms; today, we’ll look at the effect
of the α and σ2 parts of the noise ball, and discuss some ways to address the effect of these to accelerate
SGD.

Diminishing step size schemes. Since α is a parameter we can just set, a natural way of trying to
“get at” this term is to just decrease the value of α over time. This involves a time-varying step size, resulting
in an algorithm with update step

wt+1 = wt − αt∇fĩt(wt).

(The form for minibatched SGD is analogous.) Problem: naively, each each αt is a separate hyperpa-
rameter we’d need to tune...but choosing so many hyperparameters is prohibitive. Can we get some
better rintuition for how fast we should decrease the learning rate?

An example: strongly convex SGD. From the Lecture 4 notes, we had that for a single-step update of (µ-
strongly convex, L-Lipschitz gradient) SGD with step size α ≤ 1/L,

E [f(wt+1)− f∗] ≤ (1− µα)E [f(wt)− f∗] +
α2σ2L

2
.

It follows by the same argument that if instead we use the time varying step size αt,

E [f(wt+1)− f∗] ≤ (1− µαt)E [f(wt)− f∗] +
α2
tσ

2L

2
.

How should we choose αt? Well, to gain intuition, imagine that we somehow know what E [f(wt)− f∗] is.
What value of αt should we choose to minimize our bound on the objective gap at the next timestep? To
find this, we can differentiate to minimize, which gives us

0 = −µE [f(wt)− f∗] + αtσ
2L ⇒ αt =

µE [f(wt)− f∗]

σ2L
.

1

If we set αt in this way (assuming for the moment that it doesn’t result in αt being greater than 1/L), then

E [f(wt+1)− f∗] ≤
(

1− µ · µE [f(wt)− f∗]

σ2L

)
E [f(wt)− f∗] +

σ2L

2

(
µE [f(wt)− f∗]

σ2L

)2

≤ E [f(wt)− f∗]− µ2E [f(wt)− f∗]
2

2σ2L

Now, we’re going to use a little algebra trick: since

x2 ≥ x2 − y2 = (x+ y)(x− y) ⇒ 1

x+ y
≥ x− y

x2
=

1

x
− y

x2
,

it follows that if we invert this whole expression, then

E [f(wt+1)− f∗]
−1 ≥

(
E [f(wt)− f∗]− µ2E [f(wt)− f∗]

2

2σ2L

)−1

≥ E [f(wt)− f∗]
−1

+
µ2E [f(wt)− f∗]

2

2σ2L ·E [f(wt)− f∗]
2

= E [f(wt)− f∗]
−1

+
µ2

2σ2L
.

Now by induction it follows immediately that

E [f(wT)− f∗]
−1 ≥ (f(w0)− f∗)−1 +

µ2T

2σ2L
.

Inverting again gives us

E [f(wT)− f∗] ≥ 2σ2L(f(w0)− f∗)

2σ2L+ µ2 · (f(w0)− f∗) · T
which corresponds to a setting of αT of

αT =
µE [f(wT)− f∗]

σ2L
=

2µ(f(w0)− f∗)

2σ2L+ µ2 · (f(w0)− f∗) · T .

Observe that this varying learning rate/step size is of the form

αT =
α0

1 + ηT
,

which we sometimes call a 1/T step size scheme. This is a nice way to parameterize a diminishing step size
scheme, requiring only two hyperparameters, α0 and η (rather than one for each iteration). Of course, for
this to satisfy our assumption we need α0 ≤ 1/L. We could go back and derive a rate here, but I won’t do
this...the point is to give you intuition for why a 1/T rate makes sense for strongly convex optimization.

Other options:

• For non-convex optimization and non-strongly-convex optimization, often a 1/T step size rate is de-
creasing too quickly. Here, we often adopt a 1/

√
T step size rate that is structured similarly.

• We can also decrease the step sizes infrequently in epochs, rather than at every iteration.
• For some tasks (e.g. some deep learning architectures), it makes sense to increase the step size first,

and then decrease it. For example, if we expect to move from a region of very high noise early in the
optimization to a region of much lower noise later, this could make sense. This approach, especially
when repeated, is related to annealing and is sometimes called that.

2

Increasing minibatch sizes. Another thing we can try to do to target the variance term is to use a
minibatch size that becomes larger over time. Here, we’ll look at how this can effect convergence in the
non-convex optimization setting (just to vary our setting from our diminishing step size case, not because
either method is particularly suited to either setting).

If we use a constant learning rate and a minibatch of size Bt at time t, then (from the analysis we did in
Lecture 4), we would get

E [f(wt+1)] ≤ E [f(wt)]−
α

2
·E
[
‖∇f(wt)‖2

]
+
α2L

2
·E



∥∥∥∥∥

1

Bt

Bt∑

b=1

∇fĩb,t(wt)−∇f(wt)

∥∥∥∥∥

2



︸ ︷︷ ︸
second-order variance/error term

.

If (as we usually assume) the variance of an individual example gradient is bounded by σ2 as

1

n

n∑

i=1

‖∇fi(wt)−∇f(wt)‖2 ≤ σ2,

then by the analysis we’ve already done for minibatch SGD we know that

E [f(wt+1)] ≤ E [f(wt)]−
α

2
·E
[
‖∇f(wt)‖2

]
+
α2σ2L

2Bt

which implies that

α

2
·E
[
‖∇f(wt)‖2

]
≤ E [f(wt)]−E [f(wt+1)] +

α2σ2L

2Bt
.

Summing this up over T iterations of SGD, and telescoping the sum as usual, we get

α

2

T−1∑

t=0

E
[
‖∇f(wt)‖2

]
≤ E [f(w0)]−E [f(wT)] +

T−1∑

t=0

α2σ2L

2Bt

≤ f(w0)− f∗ +

T−1∑

t=0

α2σ2L

2Bt

which implies that

1

T

T−1∑

t=0

E
[
‖∇f(wt)‖2

]
≤ 2(f(w0)− f∗)

αT
+
ασ2L

T

T−1∑

t=0

1

Bt
.

This means that any increasing batch size scheme is going to converge, and if the sum of the reciprocals of
the batch sizes converges, then SGD with this scheme will converge at a rate of 1/T .

We can do a similar analysis for convex problems...I won’t discuss this in class but there’s a great analysis in
Chapter 5 of “Optimization Methods for Large-Scale Machine Learning” if you are curious.

Polyak averaging. Intuition: SGD is converging to a “noise ball” where the iterates are randomly jump-
ing around some space surrounding the optimum. We can think about these iterates as random samples that
approximate the optimum.

What can we do when we have a bunch of random samples that approximate something to improve
the precision of our estimate?

3

Technique: run regular SGD and just average the iterates. That is,

wt+1 = wt − αt∇fĩt(wt)

w̄t+1 =
t

t+ 1
· w̄t +

1

t+ 1
· wt+1;

eventually we output the average w̄T at the end of execution. This is equivalent to writing

w̄T =
1

T

T∑

t=1

wt.

The main idea here is that we’re averaging out a bunch of iterations wt that are all in the noise ball. When
you average out a bunch of noisy things, often you are able to reduce the noise.

One issue with this is that we are averaging with equal weight iterates from the very start of training, when
we have not reached the noise ball. In order to address this, we often run averaged SGD by first using a
warm-up period during which we do not average, and then only starting to average after the warm-up
period is over. Long warm-up periods (such as half of the total number of epochs ran) usually produce better
results in practice than averaged SGD without any warmup.

For Polyak averaging on non-convex problems, we run into the same issue that we ran into with AdaGrad:
as we move through a non-convex landscape, we may get very far away from the parameter values we were
at during previous iterations. If this happens, averaging together with those parameter values doesn’t really
make sense, and can hurt the performance of our algorithm. So, instead, a standard approach is to use an
exponential moving average, just like was done to transform AdaGrad into RMSProp. That is, we pick some
decay factor 0 < ρ < 1 and run

wt+1 = wt − αt∇fĩt(wt)

w̄t+1 = ρ · w̄t + (1− ρ) · wt+1.

This running average approach often outperforms other averaging methods in non-convex settings.

Stochastic variance-reduced gradient. Idea: reduce the variance of the gradient estimators by using an
infrequent full-gradient step.

Procedure SVRG

Parameters update frequency m and learning rate ⌘
Initialize w̃0

Iterate: for s = 1, 2, . . .
w̃ = w̃s�1

µ̃ = 1
n

Pn
i=1 r i(w̃)

w0 = w̃
Iterate: for t = 1, 2, . . . , m

Randomly pick it 2 {1, . . . , n} and update weight
wt = wt�1 � ⌘(r it

(wt�1) �r it
(w̃) + µ̃)

end
option I: set w̃s = wm

option II: set w̃s = wt for randomly chosen t 2 {0, . . . , m � 1}
end

Figure 1: Stochastic Variance Reduced Gradient

Proof. Given any i, consider

gi(w) = i(w) � i(w⇤) �r i(w⇤)
>(w � w⇤).

We know that gi(w⇤) = minw gi(w) since rgi(w⇤) = 0. Therefore

0 = gi(w⇤) min
⌘

[gi(w � ⌘rgi(w))]

min
⌘

[gi(w) � ⌘krgi(w)k2
2 + 0.5L⌘2krgi(w)k2

2] = gi(w) � 1

2L
krgi(w)k2

2.

That is,
kr i(w) �r i(w⇤)k2

2  2L[i(w) � i(w⇤) �r i(w⇤)
>(w � w⇤)].

By summing the above inequality over i = 1, . . . , n, and using the fact that rP (w⇤) = 0, we obtain

n�1
nX

i=1

kr i(w) �r i(w⇤)k2
2  2L[P (w) � P (w⇤)]. (8)

We can now proceed to prove the theorem. Let vt = r it
(wt�1) �r it

(w̃) + µ̃. Conditioned on
wt�1, we can take expectation with respect to it, and obtain:

E kvtk2
2

2 E kr it
(wt�1) �r it

(w⇤)k2
2 + 2 E k[r it

(w̃) �r it
(w⇤)] �rP (w̃)k2

2

=2 E kr it
(wt�1) �r it

(w⇤)k2
2 + 2 E k[r it

(w̃) �r it
(w⇤)]

� E [r it(w̃) �r it(w⇤)]k2
2

2 E kr it
(wt�1) �r it

(w⇤)k2
2 + 2 E kr it

(w̃) �r it
(w⇤)k2

2

4L[P (wt�1) � P (w⇤) + P (w̃) � P (w⇤)].

The first inequality uses ka + bk2
2  2kak2

2 + 2kbk2
2 and µ̃ = rP (w̃). The second inequality uses

E k⇠ � E ⇠k2
2 = E k⇠k2

2 � kE ⇠k2
2  E k⇠k2

2 for any random vector ⇠. The third inequality uses (8).

Now by noticing that conditioned on wt�1, we have E vt = rP (wt�1); and this leads to

E kwt � w⇤k2
2

=kwt�1 � w⇤k2
2 � 2⌘(wt�1 � w⇤)

> E vt + ⌘2 E kvtk2
2

kwt�1 � w⇤k2
2 � 2⌘(wt�1 � w⇤)

>rP (wt�1) + 4L⌘2[P (wt�1) � P (w⇤) + P (w̃) � P (w⇤)]

kwt�1 � w⇤k2
2 � 2⌘[P (wt�1) � P (w⇤)] + 4L⌘2[P (wt�1) � P (w⇤) + P (w̃) � P (w⇤)]

=kwt�1 � w⇤k2
2 � 2⌘(1 � 2L⌘)[P (wt�1) � P (w⇤)] + 4L⌘2[P (w̃) � P (w⇤)].

4

4

