
Lecture 6: Estimating the empirical risk with samples

CS4787 — Principles of Large-Scale Machine Learning Systems

Recall: The empirical risk. Suppose we have a dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ X
is an example and yi ∈ Y is a label. Let h : X → Y be a hypothesized model (mapping from examples to
labels) we are trying to evaluate. Let L : Y × Y → R be a loss function which measures how different two
labels are. The empirical risk is

R(h) =
1

n

n∑
i=1

L(h(xi), yi).

We need to compute the empirical risk a lot during training, both during validation (and hyperparameter
optimization) and testing, so it’s nice if we can do it fast. But the cost will certainly be proportional to n, the
number of training examples.

Question: what if n is very large? Must we spend a long time computing the empirical risk?

Answer: We can approximate the empirical risk using subsampling.

Idea: let Z be a random variable that takes on the value L(h(xi), yi) with probability 1/n for each i ∈
{1, . . . , n}. Equivalently, Z is the result of sampling a single element from the sum in the formula for the
empirical risk. By construction we will have

E [Z] =
1

n

n∑
i=1

L(h(xi), yi) = R(h).

If we sample a bunch of independent identically distributed random variables Z1, Z2, . . . , ZK identical to Z,
then their average will be a good approximation of the empirical risk. That is,

SK =
1

K

K∑
k=1

Zk ≈ R(h).

Question: what is the cost of computing this approximation? Does it depend on n?

This is an instance of the statistical principle that the average of a collection of independent random variables
tends to cluster around their mean. We can formalize this asymptotically with the strong law of large numbers,
which says that

P

(
lim

K→∞

1

K

K∑
k=1

Zk = E [Z] = R(h)

)
= 1,

i.e. that as the number of samples approaches infinity, their average converges to their mean almost surely.

Problem: the law of large numbers tells us that our approximations will be asymptotically accurate,
but not what the distribution of the average will look like. To get this, we use the central limit theorem,
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which characterizes the behavior of large sums of independent variables. If our random variables Z have
bounded mean and variance, then

√
K

(
1

K

K∑
k=1

Zk −E [Z]

)
converges in distribution to N (0,Var (Z)) as K →∞.

Here, N (µ, σ2) denotes the normal distribution with mean µ and variance σ2. That is, pretty much any large
enough average is going to look like a bell curve.

Problem: the law of large numbers and the central limit theorem tell us that our approximations will
be asymptotically accurate, but not how long we need to average to get approximations we can be
confident in. To address this problem, we need something called a concentration inequality: a formula that
lets us bound for a finite sum what the probability it will diverge from its expected value will be.

The granddaddy of all concentration inequalities is Markov’s inequality, which states that if S is a non-
negative random variable with finite expected value, then for any constant a > 0,

P (S ≥ a) ≤ E [S]

a
.

What bound do we get for our empirical risk sum using Markov’s inequality? Is this a useful bound?

P

(
1

K

K∑
k=1

Zk ≥ a

)
≤

Another concentration inequality is Chebyshev’s inequality. This inequality uses the variance of the random
variable, in addition to its expected value, to bound its distance from its expected value. If S is a non-negative
random variable with finite expected value and variance, then for any constant a > 0,

P (|S −E [S]| ≥ a) ≤ Var (S)

a2
.

What bound can we get using Chebyshev’s inequality if we are using a 0-1 loss? Is this a useful bound?

P

(∣∣∣∣∣ 1K
K∑

k=1

Zk −R(h)

∣∣∣∣∣ ≥ a
)
≤

Activity: if we want to estimate the empirical risk with 0-1 loss to within 10% error (i.e. |SK −R(h)| ≤ 10%)
with probability 99%, how many samples K do we need to average up if we use this Chebyshev’s inequality
bound?
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K ≥

Problem: this is just the number of samples we need to evaluate the empirical risk of a single model.
But we may want to approximate the empirical risk many times during training, either to validate a model or
to monitor convergence of training loss. For example, suppose we have M hypotheses we want to validate
(h(1), . . . , h(M)), and we use independent subsamples (S(1)

K , . . . , S
(M)
K , each of size K) to approximate the

empirical risk for each of them. What bound can we get using Chebyshev’s inequality on the probability that
all T of our independent approximations are within a distance a of their true empirical risk?

P
(∣∣∣S(m)

K −R(h(m))
∣∣∣ ≤ a for all m ∈ {1, . . . ,M}

)
≥

Now if we want to estimate the empirical risk with 0-1 loss to within the same 10% error rate with the same
probability of 99%, but for all of M = 100 different hypotheses, how many samples do we need according to
this Chebyshev bound?

K ≥

• We needed a lot more than we did for the one-hypothesis case.

• This seems to be a problem for training where we want to validate potentially thousands of models
across potentially hundreds of epochs.

• The problem with Chebyshev’s inequality: the probabilities we are getting are not that small. Since we
know that the sums are approaching something like a Gaussian distribution, we’d expect the probability
of diverging some amount from the expected value to decrease exponentially as a increases, since this
is what happens for a Gaussian. But Chebyshev’s inequality only gives us a polynomial decrease.

A better bound. In this case, we can use Hoeffding’s inequality, which gives us a much tighter bound on the
tail probabilities of a sum. Hoeffding’s inequality states that if Z1, . . . , ZK are independent random variables,
and

SK =
1

K

K∑
k=1

Zk,

then if those variables are bound absolutely by zmin ≤ Zk ≤ zmax, then

P (|SK −E [SK ]| ≥ a) ≤ 2 exp

(
− 2Ka2

(zmax − zmin)2

)
.
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Activity: if we want to estimate the empirical risk with 0-1 loss to within 10% error (i.e. |SK −R(h)| ≤ 10%)
with probability 99%, how many samples K do we need to average up if we use this Hoeffding’s inequality
bound?

K ≥

What if we want to estimate the empirical risk with 0-1 loss to within the same 10% error rate with the same
probability of 99%, but for all of M = 100 different hypotheses. How many samples do we need according
to this Hoeffding’s inequality bound?

K ≥

Takeaway: the Hoeffding’s inequality bound is much tighter, and scales better with the number of times we
want to estimate using subsampling. We can use this sort of bound to estimate the number of samples we
need to use to estimate a sum like the empirical risk to within some level of accuracy with high probability.

General takeaway point: concentration inequalities

1. let you be confident that your subsampled estimate of the empirical risk is a “good” estimate,
and

2. tell you how many samples you need for to have a certain level of confidence.

3. This is useful not just for subsampling for efficiency, but also for bounding the errors that result
from using a sample of test/validation data rather than the exact statistics on the true “real-
world” test distribution.

Many other concentration inequalities exist.

• Azuma’s inequality for when the components of your sum Zk are not independent.

• Bennett’s inequality for when you want to take the variance into account in addition to the absolute
bounds.
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