
Lecture 12: Backpropagation and ML Frameworks.

CS4787 — Principles of Large-Scale Machine Learning Systems

Recall: ReLU neural networks. We saw last time that we could express a ReLU neural network as

h(x) =WL · ReLU(WL−1 · ReLU(· · · ) + bL−1).

We can write this more explicitly and more generally in terms of a recurrence relation o0 = x and

∀l ∈ {1, . . . ,L}, al =Wl · ol−1 + bl

∀l ∈ {1, . . . ,L}, ol = σl(al),

where σl is now the non-linearity or activation function used at the lth layer. It’s clear that we could now try
to learn this by differentiating this expression using the chain rule and then using the resulting expression
in SGD. But does the simple mathematical expression we get from the chain rule give us the best way of
computing the gradient?

A simple example. Imagine that we have some functions f , g, and h, and we are interested in computing
the derivative of the function f(g(h(x))) with respect to x. By the chain rule,

d

dx
f(g(h(x))) = f ′(g(h(x))) · g′(h(x)) · h′(x).

Imagine that we just copy-pasted this math into python. We’d have something like

1 def grad_fgh(x):

2 return grad_f(g(h(x))) * grad_g(h(x)) * grad_h(x)

This code recomputes h(x) twice! To avoid this, we could imagine writing something like this instead:

1 def better_grad_fgh(x):

2 hx = h(x)

3 return grad_f(g(hx)) * grad_g(hx) * grad_h(x)

This code only computes h(x) once. But we had to do some manual work to pull out common subexpressions,
work that goes beyond what the plain chain rule gives us.

Now you might ask the very reasonable question: So what? We just recomputed one function. Could this
really have a significant impact on performance? To answer this question, suppose that we now have func-
tions f1, f2, . . . , fk, and consider differentiating the more complicated function fk(fk−1(· · · f2(f1(x)) · · · )).
The chain rule will give us

d

dx
fk(fk−1(· · · f2(f1(x)) · · · )) = f ′k(fk−1(· · · f2(f1(x)) · · · )) ·f ′k−1(fk−2(· · · f2(f1(x)) · · · )) · · · f ′2(f1(x)) ·f ′1(x).

If each function fi or f ′i takes O(1) time to compute, how long can this derivative take to compute if
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...I just copy-paste naively into python? ...I do something to save redundant computation?

Take-away point: computing a derivative by just applying the chain rule and then naively copying the
expression into code can be asymptotically slower than other methods.

• Why? Derivatives have lots of redundant expressions.
• But we’ve seen so far that when we avoid redundant compute, we can compute the derivative in the

same amount of time as it would take us to compute the original function.

Question: Can we figure out a way to remove redundant compute and get this fast code automatically?
And can we do this to produce code written with matrix multiplies for gradients of DNNs? To answer
this question, we need to talk about how a computer can represent the structure of a neural network.

Neural networks as computational graphs. In a computational graph,

• A node represents a (possibly vector or matrix) value.
• An edge represents a data dependency. Edges are directed.
• The value of a node is a function of the values of the nodes connected to all its incoming edges.

An example: for the function f(g(h(x))) above we can use the computational graph

x o1 = h(x) o2 = g(o1) o3 = f(o2)

We can equivalently think of this in terms of object orientation.

• Each node is an object.
• A node object contains references to some number of other node objects, on which it depends (these

are the incoming edges).
• A node has a method that can compute its value, given the values of the other nodes on which it

depends.

Demo: Object orientation for computational graphs.

How can this help us remove redundant computation while computing the gradient? Let’s just look at
how one node participates in gradient descent. For example, let’s say that our functions h and g depended
on some parameters w1 and w2. The node o3 = f(o2), by the chain rule, has

∂o3
∂w1

= f ′(o2) ·
∂o2
∂w1

.

What if we differentiate with respect to w2 instead? What computation is redundant (for just this
chunk of the computation) between the computation of these two partial derivatives?
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What could a computational graph for the gradient of this function look like?

x o1 = h(x) o2 = g(o1) o3 = f(o2)

g1 = h′(x) g2 = g′(o1) g3 = f ′(o2)

δ1 = g1 · δ2 δ2 = g2 · δ3 δ3 = g3

Here, the derivative of the whole function is the δ1 node at the bottom left. One simple strategy for computing
this graph without recomputing anything is to compute the top row first (and cache all the computed values
within the node objects) and then use this to compute the rest of the nodes on-demand. This is an example
of the backpropagation technique.

In practice, we usually don’t construct a separate computational graph object to represent the gradient.
Instead, we make each node object responsible for computing not only its value (in a forward pass) but also
its gradient (in a backward pass). Specifically,

• In the forward pass, a non-leaf node takes as input the values of the other nodes it depends on, and
computes its value given the parameters.

• In the backward pass, a non-leaf node takes as input the values of the other nodes it depends on, and
(2) for each of the nodes that depend on it, the gradient of the objective with respect to its value
through that node. It outputs, for each of the nodes it depends on, the gradient of the objective with
respect to that node’s value.

In mathematical notation, suppose that the goal is to differentiate some function f , and part of the com-
putational graph of f is a node that has value g, which depends on nodes with values v1, v2, . . . , vk. Since
the node with value g is part of the computational graph of f , there must be some other nodes with values
h1, h2, . . . , hm which depend on that value g, such that f depends on g only through h1, h2, . . . , hm. Then by
the multivariable chain rule,

∂f

∂g
=

m∑
i=1

∂hi
∂g
· ∂f
∂hi

.

And consequently

∂g

∂vj
· ∂f
∂g

=
∂g

∂vj︸︷︷︸
can compute given values of v1, . . . , vk

·


m∑
i=1

∂hi
∂g
· ∂f
∂hi︸ ︷︷ ︸

can be sent from node with value hi

 .

This is an expression that node g “knows” how to compute, given values that can be sent to it from
adjacent nodes in the computation graph.
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This all works for vector-valued nodes too! If we overload our partial derivative notation to mean a
gradient when taken with respect to a vector, then we can write

∂g

∂vj
· ∂f
∂g︸ ︷︷ ︸

shape: length(vj)

=
∂g

∂vj︸︷︷︸
shape: length(g)×length(vj)

·


m∑
i=1

∂hi

∂g
· ∂f

∂hi︸ ︷︷ ︸
shape: length(g)

 .

So for a deep neural network, we can do the following, which is called the backpropagation algorithm.
First, we compute the forward pass, by going from l = 1 to L, where L is the number of layers, and computing

al =Wl · ol−1 + bl ol = σl(al).

While we are doing this, we need to save the values of al and ol for later use. Then, we compute the backward
pass, by going from l = L down to 1 and computing something like

∂f

∂al
= Dσl(al) ·

∂f

∂ol

∂f

∂ol−1
=WT

l ·
∂f

∂al

∇Wl
f =

∂f

∂al
· oTl−1 ∇blf =

∂f

∂al
.

This is also written nicely out as Algorithm 6.4 in the Deep Learning Book.

Take-away point: automatic differentiation lets us write the gradient in terms of fast matrix-multiply
operations, as long as the original computational graph was vector-valued. And as an example of special
interest, we can do this for deep neural networks.

Mini-batching and tensors. Typically, for learning, we don’t just want to compute the gradient for a
single training example, but rather for multiple training examples at once in a minibatch. How can we do it
with the above automatic differentiation setup?

One way to do it is by adding an extra dimension to all our arrays, which stores the batch index. We can
then continue to compute backpropagation using fast linear algebra routines from a linear algebra library,
except now we’ve got an extra dimension (the minibatch index b) for all our computations. This sort of
higher-dimensional array-of-numbers object is called a tensor. Tensors are not only useful for enabling
minibatching; they are also useful in other cases, such as when the vectors of features we want to classify
have a natural array structure. A classic example of this is images, which are typically stored in a tensor of
dimension (# rows)× (# cols)× 3.

There are two equivalent ways of thinking about a tensor. The “CS” way is to think about it as a mul-
tidimensional array. The number of dimensions of a tensor is called its order (or sometimes, confusingly,
the rank or degree). We can also think about a tensor in the “math” way as a multilinear map. The set of
order-k tensors in Rd1×d2×···×dk is equivalent to the set of functions T : Rd1 ×Rd2 × · · · × Rdk → R that are
multilinear; i.e. that satisfy

T (x1, x2, . . . , αxi + βyi, . . . , xk) = αT (x1, x2, . . . , xi, . . . , xk) + βT (x1, x2, . . . , yi, . . . , xk).

Machine learning frameworks like TensorFlow, PyTorch, and MxNet combine (1) automatic differ-
entiation via backprop, (2) automatic compilation of matrix multiplies to GPUs for fast compute, and (3)
built-in functions and learning examples that make it easy to write and train neural networks. Mostly use
Python as the front-end interface. These frameworks make it easy to train deep neural networks and get
good performance and scalability, even for people who do not understand the principles behind their opera-
tion. This is a major driving force behind the deep learning revolution!
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