
Lecture 11: Neural Networks and Matrix Multiply.

CS4787 — Principles of Large-Scale Machine Learning Systems

Review: Linear models and neural networks. From the homeworks and projects you should all be familiar
with the notion of a linear model hypothesis class. For example, for multinomial logistic regression, we had
the hypothesis class

hW (x) = softmax(Wx).

This is a specific example of a more general linear model of the form

hW (x) = σ(Wx)

for some inputs x ∈ Rd, matrixW ∈ RD×d, and function σ : RD → RD. Many important methods in machine
learning use linear model hypothesis classes, including linear regression, logistic regression, and SVM.

One naive way that we can combine two hypothesis classes is by stacking or layering them. If I have one class
of hypotheses h(1)

W1
that maps from Rd0 to Rd1 and a second class of hypotheses h(2)

W2
that maps from Rd1 to

Rd2 , then I can form the layered hypothesis class

hW1,W2
(x) = h

(2)
W2

(h
(1)
W1

(x))

that results from first applying h(1) and then applying h(2). Intutively, we’re first having h(1) make a predic-
tion and then using the result of that prediction as an input to h(2) to make our final prediction. If both our
consituent hypothesis classes are linear models, we can write this out more explicitly as

hW1,W2
(x) = σ2(W2 · σ1(W1x)).

Of course, we don’t need to limit ourselves to layering just two linear classifiers. We could layer as many as
we want. For example, if we had L total layers, then our hypothesis would look like

hW1,W2,...,Wl
(x) = σl(Wl · σl−1(Wl−1 · · ·σ2(W2 · σ1(W1x)) · · · )).

We can write this out more generally and explicitly in terms of a recurrence relation.

o0 = x Typical runtime cost:

∀l ∈ {1, . . . ,L}, al =Wl · ol−1 + bl

∀l ∈ {1, . . . ,L}, ol = σl(al)

hW1,b1,W2,b2,...,Wl,bl(x) = oL.

where al, ol ∈ Rdl , and here we’ve also added an explicit bias parameter bl ∈ Rdl to each layer. This type of
model is called a multilayer perceptron (MLP), artificial neural network (ANN), or deep neural network (DNN).
(Specifically, it’s a type of deep neural network called a feedforward neural network.) Here, the functions σl
are called the activation functions and are almost always chosen to operate independently along each
dimension; that is (with abuse of notation)

(σl(x))i = σl(xi).

Note that this is not true for the softmax, but it’s true about pretty much every other major activation
function.

1



Not all neural networks are alike! There are many things we can change when deciding how to structure a
neural network. The way we structure a neural network is called its architecture.

What things do we need to decide on when picking an architecture?

Which of these things affect the runtime cost of computing the hypothesis given some example x?

Variants of neural networks:

• Recurrent neural networks include feedback connections in which the outputs of the model are fed back
into itself.

• Convolutional neural networks restrict some of the linear transformations Wl to be members of some
subset of linear transformations, typically convolutions with some filter.

Computational cost of neural network forward pass. What we just observed is that the overall
computational cost of computing the hypothesis is dominated by the matrix-vector multiply Wlol−1. That is,
the bottleneck for deep neural networks is matrix multiply. As a result, any good deep learning system must
involve efficient matrix multiplication.

• Downside: it’s very hard to write an efficient matrix multiply function.
• Upside: you don’t need to write an efficient matrix multiply function. Just use one that someone else

has already written.
– Standard library to use on CPU is called BLAS: Basic Linear Algebra Subroutines
– But you can also just use a programming language that wraps BLAS, like Python (numpy), MAT-

LAB, or Julia.
• ...but this means that if you don’t use BLAS or something like it, you are leaving a huge amount of

potential performance on the table.

Deep learning. We’ve now defined a hypothesis class for neural networks. But how do we choose a good
hypothesis from the class given the data? The solution: use stochastic gradient descent and its variants.

Problem: in order to use SGD, we have to be able to compute the derivative of the empirical risk with
respect to the parameters of the neural network. How do we do this? We can just apply the chain rule to
our recurrence relation. One way to compute the gradient is to compute the directional derivative of the
loss

d

dη
L(hW1+η∆W1,b1+η∆b1,W2+η∆W2,b2+η∆b2,...,Wl+η∆Wl,bl+η∆bl(x), y)

we can do this algebraically using the chain rule on the recurrence relation that defines the neural network.

Backpropagation. So with a bunch of manual effort, we can compute an expression for the gradient. But this
doesn’t give us an algorithm for computing that gradient efficiently. Backpropagation is one such algorithm.
The idea is to first do a forward pass through the network, where we compute the activations just as if we
were doing a prediction, and then do a second backward pass to compute the gradients.

What operation takes the most time in the computation of backpropagation?

2


