Practice Questions
CS4787 — Principles of Large-Scale Machine Learning Systems

Problem 1: Preconditioning and Adaptive Learning Rates.

Consider the linear regression problem defined by a dataset with examples z € R? and labels y € R,
with model
he(z) = wlz

and using the square loss
N 1. 2
L(g.y) =5 19—l

Suppose that d = 2 and the dataset contains the examples

1000 0 0 —1000 0
€T = 0 P '1:2:47 ‘T3:57 Ty = 0 , Iy = _9|>

but you don’t know the labels y; a priori.

(a). Roughly, what is the largest step size o you could use for SGD on this problem without it
diverging? (An order-of-magnitude answer from a back-of-the-envelope calculation is fine.)

+ _ 400000 O

! 0 9|’
of this is . = 400000. So I would expect the largest step size I could use to be something like
1/L = 0.0000025.

A: The second derivative matrix of this is % Zle Tix and the largest eigenvalue

(b). What is the condition number x of this problem? What does this tell us about the conver-
gence rate of gradient descent and SGD on this problem? Roughly how many steps do you expect
they would take to converge? (Again, an order-of-magnitude answer from a back-of-the-envelope
calculation is fine for this second question.)

A: The condition number is the ratio of the largest to smallest eigenvalues of the problem,

K = 400000 ~ 44444

This suggests that some small multiple of 40000 steps would be needed for SGD or gradient descent
to converge on this problem (give or take some factor that depends on how accurate we want our
solutions to be and on how accurate our initial guess was).

(c). Choose a preconditioning matrix P such that preconditioned SGD
W1 = wy — aPV f(wy)

would perform better than baseline SGD on this task. Roughly how many steps do you expect your
new preconditioned model would take to converge? (Again, an order-of-magnitude answer from a
back-of-the-envelope calculation is fine for this second question.)

A: The natural preconditioning matrix to pick is

p_ [400000 0 -
o0 9

I would expect this to now take a small number of iterations, much closer to 1, because the condition
number is much smaller now (again this is give or take some factor that depends on how accurate
we want our solutions to be and how close our initial guess was).

~
~

0.0000025 0
0 0.1111111

(d). How well do you expect AdaGrad and Adam would perform on this problem? Why?

A: I expect they would perform quite well, because they would automatically learn to use a different
step size in each coordinate, which would have the equivalent effect to the diagonal preconditioning
matrix in 1(c).

(e). Do you expect that adding Polyak averaging to SGD could help accelerate learning for this
problem? Why or why not?

A: T expect that adding Polyak averaging could help a little, but not nearly as much as these precon-
ditioning or adaptive learning rate methods. Polyak averaging would help by making SGD get more
accurate solutions by averaging out iterations w; to produce a lower-variance solution.

Problem 2: Dimensionality Reduction and Sparsity.

(a). Describe the method of random projections. When is it useful? According to the J-L lemma,
how many dimensions do I need for the space I am projecting into in order to ensure the existence
of a projection that preserves pairwise distances for a dataset of size n up to an error tolerance of e?

A: Random projections projects the d-dimensional features into a D-dimensional linear subspace
(D < d). This is useful in large feature sets because using the Johnson-Lindenstrauss lemma, we
can show that D can now dependent on n rather than d. To preserve pairwise distances:

D > 8log(n)/é

for a dataset of size n and error tolerance of e.

(b). When would I want to use an autoencoder instead of random projection or PCA? How does the
overall compute time needed compare between dimensionality reduction with an autoencoder and
dimensionality reduction with random projection?

A: An autoencoder would be used to encode nonlinear feature representations whereas random
projection or PCA can only encode linear representations. It may also be able to do a better job at
reducing dimensionality than the other methods. Since autoencoders feature a neural network for
encoding/decoding, the overall compute time is significantly higher than that of random projection.

(c). Consider the matrix

-7 03 0 0 4 -2 -4
A= 0o 00 0 O O 0 3
0o 00 0 0 -2 0 O
0o 00 -1 0 0 0 O

Express this matrix as a sparse matrix in COO format and CSR format. What are some of the
advantages of each storage format?

A: See lecture 10 for more information about sparsity formats.
In COO format,
row indexes: [0 0 0 0 0 1 2 3]

column indexes: [O 2 5 6 7 7 5 3]
values: [-7 3 4 -2 —4 3 -2 —1]

In CSR format,
row offsets: [O 5 6 7]
column indexes: [O 2 5 6 7 7 5 3]
values: [—7 3 4 -2 -4 3 =2 —1]

COO is a very general purpose sparsity format that stores only the values that are non-zero. CSR is
a better format for row access, giving way to faster matrix operations.

Problem 3: Deep Learning.

(a). Write down the expression for (forward) inference using a deep feedforward fully connected
neural network. (That is, if I have an already trained neural network, how do I use it to get a
prediction given a training example x?)
A: Copying from the recurrence relation from lecture 11:

VZE{L...,E}, ap =W, 01+

Vie{l,....,L}, o =o(a)

The forward inference expression for a single training example = would be:
f = O’L(WL . O’g_l(Wg_l cee UQ(WQ . O’l(Wll‘ + bl) + bz) B bg_l) + bg)

(b). What is the computational cost of running inference on a deep neural network? Suppose that
all the nonlinearities operate element-wise using the RelLU function

ReLU(a) = max(a,0)

and the sizes of the layers are dy (where x € R%), d;,ds,...,ds = 1. How many numerical
operations would computing this forward pass require? Which operation dominates: the matrix
multiplies or the nonlinearities?

A: It would take £ additions, £ multiplications and £ nonlinearities of ReLU to compute the forward
pass. Neither would dominate as both operations are used £ times.

(c). Now write down the expression/algorithm for backpropagation on this same network, using
RelLU activation functions. (That is, how do I compute the gradient of this neural network with
respect to the weights for a training example x:?)

A: The backpropogation rule would be:

U _ reLU'(an. 2 Of _yr. 9f

3(11 = RelU (al) 801 001_1 o Wl 8&[
of of
VWlf:é)—al.OlT_l Vb‘f:(?—al

(d). What is the computational cost of running backpropagation on a deep neural network? That
is, how many numerical operations would computing backpropagation require? Which operation
dominates: the matrix multiplies or the nonlinearities?

A: To update all parameters in the deep neural network, we would need 3£ multiplications, and
L nonlinearities of ReLU’ operations, assuming that all ¢; and o; were computed and stored in the
forward pass. In backpropagation, the matrix multiplies dominate.

