
Lecture 9: Accelerating SGD with variance reduction and
averaging.

CS4787 — Principles of Large-Scale Machine Learning Systems

Recall: In last week’s homework, we looked at a case for which SGD can still converge asymptotically to the
global optimum even with a constant step size. This happened when the magnitude of the gradient samples
∇fĩ(wt) was going to zero as our iterates wt approached the optimum point. In today’s lecture, we’ll look
at ways we can modify our SGD algorithm to make this happen automatically. First, recall that (for both
convex and non-convex optimization), if the largest eigenvalue of the second derivative is always bounded
in magnitude by L, then for SGD we had

E [f(wt+1)] = E
[
f(wt − αt∇fĩt(wt))

]
.

Next, we apply Taylor’s theorem. Since a few people have asked about it in office hours, I’m going to go back
and give a bit more detail about these Taylor’s theorem results. Taylor’s theorem with the Lagrange form of
the remainder says that for any function f : R→ R continuously differentiable up to order k + 1,

h(a+ x) = h(a) + x · h′(a) +
1

2
x2 · h′′(a) + · · ·+ 1

i!
xi · h(i)(a) + · · ·+ 1

k!
xk · h(k)(a) +

1

(k + 1)!
xk+1 · h(k+1)(b)

for some b in the open interval between a and a+ x. In particular, for k = 1,

h(a+ x) = h(a) + x · h′(a) +
1

2
x2 · h′′(b).

If we define h(αt) = f(wt+1) = f(wt−αt∇fĩt(wt)), then applying Taylor’s theorem to this by letting x be αt

and a be 0 gives us

h(αt) = h(0) + αt · h′(0) +
1

2
α2
t · h′′(b)

= f(wt) + αt ·
(
−∇fĩt(wt)

T∇f(wt)
)

+
1

2
α2
t

(
∇fĩt(wt)

T∇2f(wt − b∇fĩt(wt))∇fĩt(wt)
)

= f(wt)− αt · ∇fĩt(wt)
T∇f(wt) +

1

2
α2
t∇fĩt(wt)

T∇2f(ζt)∇fĩt(wt)

where for simplicity we define ζt = wt − b∇fĩt(wt). Now taking the expected value of both sides and using
our bound on the largest eigenvalue of the second derivative, and if we require that αtL ≤ 1, we get

E [f(wt+1)] = E [f(wt)]− αt ·E
[
∇fĩt(wt)

T∇f(wt)
]

+
1

2
α2
t ·E

[
∇fĩt(wt)

T∇2f(ζt)∇fĩt(wt)
]

≤ E [f(wt)]− αt ·E
[
‖∇f(wt)‖2

]
+
α2
tL

2
·E
[∥∥∇fĩt(wt)

∥∥2
]

= E [f(wt)]− αt ·E
[
‖∇f(wt)‖2

]
+
α2
tL

2
·E
[
‖∇f(wt)‖2

]
+
α2
tL

2
·E
[∥∥∇fĩt(wt)−∇f(wt)

∥∥2
]

= E [f(wt)]− αt

(
1− αtL

2

)
·E
[
‖∇f(wt)‖2

]
+
α2
tL

2
·E
[∥∥∇fĩt(wt)−∇f(wt)

∥∥2
]

= E [f(wt)]−
αt

2
·E
[
‖∇f(wt)‖2

]
+
α2
tL

2
·E
[∥∥∇fĩt(wt)−∇f(wt)

∥∥2
]

︸ ︷︷ ︸
second-order variance/error term

.

We saw that as long as this second-order term is bounded, we can show that SGD with a constant learning
rate will converge to a noise ball. In this lecture, we’ll look at methods we can use to reduce this second-order
term, which can sometimes result in faster and more scalable convergence.

1

Increasing minibatch sizes. One thing we can try to do is use a minibatch size that becomes larger
over time. If we use a constant learning rate and a minibatch of size Bt at time t, then the above expression
looks like

E [f(wt+1)] ≤ E [f(wt)]−
α

2
·E
[
‖∇f(wt)‖2

]
+
α2L

2
·E



∥∥∥∥∥

1

Bt

Bt∑

b=1

∇fĩb,t(wt)−∇f(wt)

∥∥∥∥∥

2



︸ ︷︷ ︸
second-order variance/error term

.

If the variance of an individual example gradient is bounded by σ2 as

1

n

n∑

i=1

‖∇fi(wt)−∇f(wt)‖2 ≤ σ2,

then by the analysis we’ve already done we know that

E [f(wt+1)] ≤ E [f(wt)]−
α

2
·E
[
‖∇f(wt)‖2

]
+
α2σ2L

2Bt

which implies that

α

2
·E
[
‖∇f(wt)‖2

]
≤ E [f(wt)]−E [f(wt+1)] +

α2σ2L

2Bt
.

Summing this up over T iterations of SGD, and telescoping the sum as usual, we get

α

2

T−1∑

t=0

E
[
‖∇f(wt)‖2

]
≤ E [f(w0)]−E [f(wT)] +

T−1∑

t=0

α2σ2L

2Bt

≤ f(w0)− f∗ +

T−1∑

t=0

α2σ2L

2Bt

which implies that

1

T

T−1∑

t=0

E
[
‖∇f(wt)‖2

]
≤ 2(f(w0)− f∗)

αT
+
ασ2L

T

T−1∑

t=0

1

Bt
.

This means that any increasing batch size scheme is going to converge, and if the sum of the reciprocals of
the batch sizes converges, then SGD with this scheme will converge at a rate of 1/T .

We can do a similar analysis for convex problems...I won’t discuss this in class but there’s a great analysis in
Chapter 5 of “Optimization Methods for Large-Scale Machine Learning” if you are curious.

Polyak averaging. Intuition: SGD is converging to a “noise ball” where the iterates are randomly jump-
ing around some space surrounding the optimum. We can think about these iterates as random samples that
approximate the optimum.

What can we do when we have a bunch of random samples that approximate something to improve
the precision of our estimate?

Technique: run regular SGD and just average the iterates. That is,

wt+1 = wt − αt∇fĩt(wt)

w̄t+1 =
t

t+ 1
· w̄t +

1

t+ 1
· wt+1;

2

eventually we output the average w̄T at the end of execution. This is equivalent to writing

w̄T =
1

T

T∑

t=1

wt.

To gain intuition about Polyak averaging, let’s look at a simple one-dimensional quadratic...

f(w) =
1

2
w2

with example gradients
∇fi(w) = w + ui

where u ∼ N (0, 1) is a random normally-distributed random variable with mean 0 and variance σ2. Suppose
that we run SGD on this with a constant learning rate α. Our update step will be

wt+1 = wt − αwt − αuĩt = (1− α)wt − αuĩt .

Applying this recursively, we get

wT = (1− α)Tw0 − α
T−1∑

t=0

(1− α)T−1−tuĩt
︸ ︷︷ ︸

noise term.

What is the variance of this noise term? Well, assuming that these normal random variables are independent,
we have that

E



(
α

T−1∑

t=0

(1− α)T−1−tuĩt

)2

 = α2

T−1∑

t=0

E
[
(1− α)2(T−1−t)u2

ĩt

]

= α2
T−1∑

t=0

(1− α)2(T−1−t) · σ2

≤ α2σ2
∞∑

k=0

(1− α)2k

= α2σ2 1

1− (1− α)2
=

ασ2

2− α.

On the other hand, if we use averaging, we get

w̄T =
1

T

T−1∑

k=0

(
(1− α)kw0 − α

k−1∑

t=0

(1− α)k−1−tuĩt

)
.

3

If we look at the variance of the noise term here, we get

E



(

1

T

T−1∑

k=0

(
α

k−1∑

t=0

(1− α)k−1−tuĩt

))2

 =

α2

T 2
E



(

T−2∑

t=0

T−1∑

k=t+1

(1− α)k−1−tuĩt

)2



=
α2

T 2

T−2∑

t=0

E



(

T−1∑

k=t+1

(1− α)k−1−tuĩt

)2



=
α2

T 2

T−2∑

t=0

E







T−1−(t+1)∑

i=0

(1− α)iuĩt




2



=
α2

T 2

T−2∑

t=0




T−1−(t+1)∑

i=0

(1− α)i




2

σ2

≤ α2

T 2

T−2∑

t=0

(∞∑

i=0

(1− α)i

)2

σ2

=
α2

T 2

T−2∑

t=0

(
1

1− (1− α)

)2

σ2

=
1

T 2

T−2∑

t=0

σ2

≤ σ2

T
.

This is actually decreasing with T , even though our baseline result without averaging wasn’t!

Variance reduction. Idea: modify the update step to decrease the variance of SGD. There are many
ways to do this. From the original Stochastic Variance Reduced Gradient (SVRG) paper, here’s one way to
do it.

Procedure SVRG

Parameters update frequency m and learning rate ⌘
Initialize w̃0

Iterate: for s = 1, 2, . . .
w̃ = w̃s�1

µ̃ = 1
n

Pn
i=1 r i(w̃)

w0 = w̃
Iterate: for t = 1, 2, . . . , m

Randomly pick it 2 {1, . . . , n} and update weight
wt = wt�1 � ⌘(r it

(wt�1) �r it
(w̃) + µ̃)

end
option I: set w̃s = wm

option II: set w̃s = wt for randomly chosen t 2 {0, . . . , m � 1}
end

Figure 1: Stochastic Variance Reduced Gradient

Proof. Given any i, consider

gi(w) = i(w) � i(w⇤) �r i(w⇤)
>(w � w⇤).

We know that gi(w⇤) = minw gi(w) since rgi(w⇤) = 0. Therefore

0 = gi(w⇤) min
⌘

[gi(w � ⌘rgi(w))]

min
⌘

[gi(w) � ⌘krgi(w)k2
2 + 0.5L⌘2krgi(w)k2

2] = gi(w) � 1

2L
krgi(w)k2

2.

That is,
kr i(w) �r i(w⇤)k2

2  2L[i(w) � i(w⇤) �r i(w⇤)
>(w � w⇤)].

By summing the above inequality over i = 1, . . . , n, and using the fact that rP (w⇤) = 0, we obtain

n�1
nX

i=1

kr i(w) �r i(w⇤)k2
2  2L[P (w) � P (w⇤)]. (8)

We can now proceed to prove the theorem. Let vt = r it
(wt�1) �r it

(w̃) + µ̃. Conditioned on
wt�1, we can take expectation with respect to it, and obtain:

E kvtk2
2

2 E kr it
(wt�1) �r it

(w⇤)k2
2 + 2 E k[r it

(w̃) �r it
(w⇤)] �rP (w̃)k2

2

=2 E kr it
(wt�1) �r it

(w⇤)k2
2 + 2 E k[r it

(w̃) �r it
(w⇤)]

� E [r it(w̃) �r it(w⇤)]k2
2

2 E kr it
(wt�1) �r it

(w⇤)k2
2 + 2 E kr it

(w̃) �r it
(w⇤)k2

2

4L[P (wt�1) � P (w⇤) + P (w̃) � P (w⇤)].

The first inequality uses ka + bk2
2  2kak2

2 + 2kbk2
2 and µ̃ = rP (w̃). The second inequality uses

E k⇠ � E ⇠k2
2 = E k⇠k2

2 � kE ⇠k2
2  E k⇠k2

2 for any random vector ⇠. The third inequality uses (8).

Now by noticing that conditioned on wt�1, we have E vt = rP (wt�1); and this leads to

E kwt � w⇤k2
2

=kwt�1 � w⇤k2
2 � 2⌘(wt�1 � w⇤)

> E vt + ⌘2 E kvtk2
2

kwt�1 � w⇤k2
2 � 2⌘(wt�1 � w⇤)

>rP (wt�1) + 4L⌘2[P (wt�1) � P (w⇤) + P (w̃) � P (w⇤)]

kwt�1 � w⇤k2
2 � 2⌘[P (wt�1) � P (w⇤)] + 4L⌘2[P (wt�1) � P (w⇤) + P (w̃) � P (w⇤)]

=kwt�1 � w⇤k2
2 � 2⌘(1 � 2L⌘)[P (wt�1) � P (w⇤)] + 4L⌘2[P (w̃) � P (w⇤)].

4

4

