
Lecture 7: Accelerating SGD with Momentum

CS4787 — Principles of Large-Scale Machine Learning Systems

Recall: When we analyzed gradient descent and SGD for strongly convex objectives, the convergence rate
depended on the condition number κ = L/µ. For example, the noise ball size for SGD with a constant step
size was determined by

E [f(wT)− f∗] ≤ (1− αµ)
T · (f(w0)− f∗) +

ασ2L

2µ
= (1− αµ)

T · (f(w0)− f∗) +
ασ2κ

2

and the convergence rate for gradient descent with constant step size was

f(wT)− f∗ ≤ exp

󰀕
−µT

L

󰀖
· (f(w0)− f∗) = exp

󰀕
−T

κ

󰀖
· (f(w0)− f∗) .

Takeaway: when the condition number is high, convergence can become slow. Motivates the question:
How can we speed up gradient descent when the condition is high?

To understand this more easily, let’s consider the simplest possible setting with a high condition number: a
two-dimensional quadratic. Specifically,

f(w) = f(w1, w2) =
L

2
w2

1 +
µ

2
w2

2 =
1

2

󰀗
w1

w2

󰀘T 󰀗
L 0
0 µ

󰀘 󰀗
w1

w2

󰀘
.

Here, the optimum value occurs at w∗ = 0, and the second derivative matrix is the constant

∇2f(w) =

󰀗
L 0
0 µ

󰀘
,

and the eigenvalues of this matrix are L and µ, so if L ≥ µ > 0 then f is strongly convex with strong
convexity constant µ and its second derivative is bounded by L. If we think about what gradient descent
(with constant learning rate) is going to do on this problem, its update rule will be the following

(wt+1)1 = (wt)1 − αL(wt)1

(wt+1)2 = (wt)2 − αµ(wt)2.

This means that

((wT)1)
2
= (1− αL)2T ((w0)1)

2

((wT)2)
2
= (1− αµ)2T ((w0)2)

2

and so
f(wT) =

L

2
(1− αL)2T ((w0)1)

2
+

µ

2
(1− αµ)2T ((w0)2)

2
.

Asymptotically, this will be dominated by whichever term grows slower. That is

f(wT) = O
󰀃
max(|1− αL| , |1− αµ|)2T

󰀄
.

If we look at this inner maximum as a function of α, a curious effect emerges.

1

So while we would want to pick a smaller learning rate for the L term, and a larger learning rate for the µ
term, we’re forced to pick something in the middle. (Incidentally, this optimal learning rate occurs at

α =
2

L+ µ
⇒ max(|1− αL| , |1− αµ|) = L− µ

L+ µ
=

κ− 1

κ+ 1
= 1− 2

κ+ 1

but it’s not super important to know this.) That is, wed like to set the step size larger for dimension with less
curvature, and smaller for the dimension with more curvature. But we can’t do this with plain GD or SGD,
because there is only one step-size parameter.

What can we do about this problem? Three common solutions:

• Momentum (this lecture)

• Adaptive learning rates (next week)

• Preconditioning (next week)

Momentum. Motivation: try to tell the difference between more and less curved directions using informa-
tion already available in gradient descent. Idea: in the one-dimensional case, if the gradients are reversing
sign, then the step size is too large, because we’re overshooting the optimum. Conversely, if the gradients
are staying in the same direction, then the step size is too small. Can we use this to make steps smaller
when gradients reverse sign and larger when gradients are consistently in the same direction?

Polyak momentum step. Adds an extra momentum term to gradient descent.

wt+1 = wt − α∇f(wt) + β(wt − wt−1).

Intuition: if the current gradient is in the same direction as the previous step, move a little further in the
same direction. If it’s in the opposite direction, move a little less far. This is also known as the heavy
ball method because it approximately simulates the dynamics of a ball that has physical momentum sliding
through the space we want to optimize over.

Analysis of Polyak momentum. Rather than showing you the full analysis for convex functions (which is

2

involved), we’ll look at a simple case that lets us build intuition: the case of one dimensional quadratics

f(w) =
λ

2
w2.

Using this, Polyak momentum’s update step looks like

wt+1 = wt − αλwt + β(wt − wt−1)

= (1 + β − αλ)wt − βwt−1.

Now we use a simplifying trick: let wt = βt/2zt. Then

β(t+1)/2zt+1 = βt/2(1 + β − αλ)zt − β(t−1)/2 · βzt−1

which reduces to
zt+1 =

1 + β − αλ√
β

zt − zt−1.

Next, if we let

u =
1 + β − αλ

2
√
β

,

then this simplifies further to
zt+1 = 2uzt − zt−1.

If we initialize with some fixed values of z0 and z1, this is a degree-t polynomial in u. If we choose to initialize
with z0 = 1 and z1 = u then these are a special family of polynomials called the Chebyshev polynomials,
which are standardly defined by T0(u) = 1, T1(u) = u, and

Tt+1(u) = 2uTt(u)− Tt−1(u).

These polynomials have an important and very useful property: for all t ∈ N,

if − 1 ≤ u ≤ 1 then − 1 ≤ Tt(u) ≤ 1.

This means that as long as |u| ≤ 1, it will also hold that |zt| ≤ 1. And since we defined zt in terms of wt,

w2
t =

󰀓
βt/2zt

󰀔2

= βtz2t ≤ βt

as long as we somehow arrange for z0 = 1 and z1 = u. What if we initialize somewhere else?

3

So w2
t will be approaching zero at a linear rate of βt. Note that this happens no matter what the step size is,

as long as |u| ≤ 1. To make |u| ≤ 1, we need

1 ≥ |u| =
󰀏󰀏󰀏󰀏
1 + β − αλ

2
√
β

󰀏󰀏󰀏󰀏 ⇒ −1 ≤ 1 + β − αλ

2
√
β

≤ 1.

What does this mean for multidimensional quadratics? For a multidimensional quadratic, we’ll see the
same dynamics as the single-dimension quadratic along each of the eigenvectors of the second derivative
matrix. Derivation?

Importantly, they will all converge at the same rate of βt, even for directions of different curvature! This wil
happen as long as the condition

−1 ≤ 1 + β − αλ

2
√
β

≤ 1

is satisfied for all the directions λ. Since µ ≤ λ ≤ L, this will hold if and only if

−1 ≤ 1 + β − αL

2
√
β

and
1 + β − αµ

2
√
β

≤ 1.

Now, we want to make β as small as possible to converge as fast as possible. How small can we make β for
this to hold? This smallest value of β will result in these inequalities holding with equality, so we’ll get

−1 =
1 + β − αL

2
√
β

and
1 + β − αµ

2
√
β

= 1.

And through solving this for α and β (two equations, two unknowns), we get

α =
2 + 2β

L+ µ
and

󰁳
β =

√
κ− 1√
κ+ 1

= 1− 2√
κ+ 1

.

How does this compare to the rate that we got for gradient descent without momentum?

What is the additional computational cost of running momentum? What is the memory requirement?

How do we set the momentum for machine learning?

• Often, just set it to be β = 0.9

• Can also use a hyperparameter optimization method (which we’ll cover later)

Nesterov momentum step. Slightly different from Polyak momentum; guaranteed to work for convex
functions.

vt+1 = wt − α∇f(wt)

wt+1 = vt+1 + β(vt+1 − vt).

Main difference: separate the momentum state from the point that we are calculating the gradient at.

Momentum with SGD. Usually we run something like this:

vt+1 = βvt − α∇fĩt(wt)

wt+1 = wt + vt+1.

4

