
Lecture 6: SGD Continued, Minibatching, and Learning
Rates

CS4787 — Principles of Large-Scale Machine Learning Systems

Where we left off: we looked at how stochastic gradient descent performs on non-convex objectives. But
what happens in the “nice” case when we assume convexity?

Stochastic gradient descent for strongly convex objectives. Recall that the update step for
SGD is

wt+1 = wt − αt∇fĩt(wt).
As before, we start with Taylor’s theorem. From Taylor’s theorem, there exists a ξt such that

f(wt+1) = f(wt − αt∇fĩt(wt))

= f(wt)−
(
αt∇fĩt(wt)

)T ∇f(wt) + 1

2

(
αt∇fĩt(wt)

)T ∇2f(ξt)
(
αt∇fĩt(wt)

)
≤ f(wt)− αt∇fĩt(wt)

T∇f(wt) +
α2
tL

2

∥∥∇fĩt(wt)∥∥2 .
If we take the expected value, by our analysis last time we’ll get

E [f(wt+1)] ≤ E [f(wt)]− αtE
[
∇fĩt(wt)

T∇f(wt)
]
+
α2
tL

2
E
[∥∥∇fĩt(wt)∥∥2]

≤ E [f(wt)]− αtE
[
‖∇f(wt)‖2

]
+
α2
tL

2
E
[∥∥∇fĩt(wt)∥∥2] .

Last time, we assumed that the magnitude of the gradient samples
∥∥∇fĩt(w)∥∥ had some global upper bound.

But it turns out that this is inconsistent with strong convexity, so we can’t use it here. Instead of a global
upper bound on the gradient samples, let’s assume a bound on their variance instead: for some σ > 0, we
require that for all w ∈ Rd,

E
[
‖∇fĩ(w)−∇f(w)‖

2
]
=

1

n

n∑
i=1

‖∇fi(w)−∇f(w)‖2 ≤ σ2.

This is equivalent to writing

σ2 ≥ 1

n

n∑
i=1

‖∇fi(w)−∇f(w)‖2

=
1

n

n∑
i=1

(
‖∇fi(w)‖2 − 2∇f(w)T∇fi(w) + ‖∇f(w)‖2

)
=

1

n

n∑
i=1

‖∇fi(w)‖2 − 2∇f(w)T
(
1

n

n∑
i=1

∇fi(w)

)
+

1

n

n∑
i=1

‖∇f(w)‖2

=
1

n

n∑
i=1

‖∇fi(w)‖2 − 2∇f(w)T (∇f(w)) + ‖∇f(w)‖2

=
1

n

n∑
i=1

‖∇fi(w)‖2 − ‖∇f(w)‖2

= E
[∥∥∇fĩt(w)∥∥2]− ‖∇f(w)‖2 .

1



So this gives us a way to bound
∥∥∇fĩt(wt)∥∥2 as well. (You may notice that this is the vector analogue

of the classic statistical formula for the variance in terms of the expected value and the second moment.)
Substituting this bound into our expression for SGD above gives us

E [f(wt+1)] ≤ E [f(wt)]− αtE
[
∇fĩt(wt)

T∇f(wt)
]
+
α2
tL

2
E
[∥∥∇fĩt(wt)∥∥2]

≤ E [f(wt)]− αtE
[
‖∇f(wt)‖2

]
+
α2
tL

2

(
σ2 +E

[
‖∇f(wt)‖2

])
≤ E [f(wt)]− αt

(
1− αtL

2

)
E
[
‖∇f(wt)‖2

]
+
α2
tσ

2L

2
.

Next, as we did in the analysis of gradient descent, we can apply the Polyak–Lojasiewicz condition,

‖∇f(x)‖2 ≥ 2µ (f(x)− f∗) ;

this gives us

E [f(wt+1)] ≤ E [f(wt)]− 2αtµ

(
1− αtL

2

)
E [f(wt)− f∗] +

α2
tσ

2L

2
.

Subtracting f∗ from both sides, we get

E [f(wt+1)− f∗] ≤ E [f(wt)− f∗]− 2αtµ

(
1− αtL

2

)
E [f(wt)− f∗] +

α2
tσ

2L

2

=

(
1− 2αtµ

(
1− αtL

2

))
E [f(wt)− f∗] +

α2
tσ

2L

2
.

To simplify this a bit, let’s add the requirement that for all time,

αtL ≤ 1 which implies that 1− αtL

2
≥ 1

2
.

This simplifies our bound to

E [f(wt+1)− f∗] ≤ (1− αtµ)E [f(wt)− f∗] +
α2
tσ

2L

2
.

Now we will analyze this in two different settings: first for constant learning rate, and then for a decreasing
step size.

SGD with a constant step size. With a constant learning rate αt = α, we get

E [f(wt+1)− f∗] ≤ (1− αµ)E [f(wt)− f∗] +
α2σ2L

2
.

This is a simple linear recurrence relation. To solve it, we first find the fixed point. This fixed point occurs at
ρ, where

ρ = (1− αµ) ρ+ α2σ2L

2
⇒ ρ =

ασ2L

2µ
.

Subtracting the fixed point from both sides of the inequality above, we get

E [f(wt+1)− f∗]−
ασ2L

2µ
≤ (1− αµ)E [f(wt)− f∗] +

α2σ2L

2
− ασ2L

2µ

= (1− αµ)
(
E [f(wt)− f∗]−

ασ2L

2µ

)
.

2



Now applying this recursively gives us

E [f(wT )− f∗]−
ασ2L

2µ
≤ (1− αµ)T

(
(f(w0)− f∗)−

ασ2L

2µ

)
≤ (1− αµ)T · (f(w0)− f∗).

And so

E [f(wT )− f∗] ≤ (1− αµ)T · (f(w0)− f∗) +
ασ2L

2µ
.

Interpreting the result. What this says is that SGD with constant step size converges at a linear rate to a noise
ball of size proportional to α. How fast that linear rate is is also a function of α: namely, it converges faster
the larger α is. This exposes some tradeoffs in the parameters used in the expression.

Activity: the tradeoffs of SGD, as guided by our theoretical formula.

What tradeoffs happen when
we change α?

How could we change σ2?
What tradeoffs happen?

How could we change µ? What
tradeoffs happen?

SGD with a decreasing step size: motivation. This analysis is a bit less straightforward than the fixed-
step-size analysis. We’re going to look for an optimal step size rule. We start with our inequality from
before:

E [f(wt+1)− f∗] ≤ (1− αtµ)E [f(wt)− f∗] +
α2
tσ

2L

2
.

If we minimize the right side of this over αt by differentiating, we get

0 = −µE [f(wt)− f∗] + αtσ
2L ⇒ E [f(wt)− f∗] =

αtσ
2L

µ

If we suppose that we used the optimal step size at each iteration, we would get

αt+1σ
2L

µ
≤ (1− αtµ)

αtσ
2L

µ
+
α2
tσ

2L

2

=
αtσ

2L

µ
− α2

tσ
2L

2
,

which simplifies to

αt+1 ≤ αt −
α2
tµ

2
.

Finally, if we invert this, we get
1

αt+1
≥ 1

αt − α2
tµ
2

.

Since the function 1/x is convex, it follows that

1

x+ y
≥ 1

x
− y

x2
,

3



and so
1

αt+1
≥ 1

αt
+
µ

2
.

That is, α−1
t is increasing by about a constant amount each iteration. This motivates us to propose the 1/t

step size scheme in which the learning rate decreases proportional to the inverse of the iteration number.

SGD with a 1/t step size: analysis. (This proof is adapted from Optimization Methods for Large-Scale
Machine Learning.) Suppose that we pick, for some constant c > 0,

αt =
cα0

c+ t

where as before we require that α0L ≤ 1. Then we’d like to prove that

E [f(wt)− f∗] ≤
c

c+ t
max

(
cα2

0σ
2L

2(cα0µ− 1)
, f(w0)− f∗

)
=

cν

c+ t

where ν is defined to be equal to the max such that this will hold. Clearly, this holds when t = 0, so all we
need to do to prove this is to validate the inductive case. From our analysis above, we have

E [f(wt+1)− f∗] ≤
(
1− cα0

c+ t
µ

)
E [f(wt)− f∗] +

σ2L

2

(
cα0

c+ t

)2

≤
(
1− cα0

c+ t
µ

)
cν

c+ t
+
σ2L

2

(
cα0

c+ t

)2

=

(
c+ t− cα0µ

(c+ t)2

)
cν +

c2α2
0σ

2L

2(c+ t)2

=

(
c+ t− 1

(c+ t)2

)
cν −

(
cα0µ− 1

(c+ t)2

)
cν +

c2α2
0σ

2L

2(c+ t)2

≤
(
c+ t− 1

(c+ t)2

)
cν −

(
cα0µ− 1

(c+ t)2

)
c · cα2

0σ
2L

2(cα0µ− 1)
+
c2α2

0σ
2L

2(c+ t)2

=

(
c+ t− 1

(c+ t)2

)
cν.

Finally, since (c+ t)2 ≥ (c+ t− 1)(c+ t+ 1),

E [f(wt+1)− f∗] ≤
(

c+ t− 1

(c+ t− 1)(c+ t+ 1)

)
cν

=
cν

c+ t+ 1
.

This is what we wanted to prove.

Minibatching. One way to make all these rates smaller is by decreasing the value of σ2. A simple way to
do this is by using minibatching. With minibatching, we use a sample of the gradient examples of size larger
than 1. If the batch size is B, this results in an estimator with variance B times smaller. How does this trade
off work for faster convergence?

4


