
Lecture 25: Machine Learning Accelerators.

CS4787 — Principles of Large-Scale Machine Learning Systems

So far, we’ve talked about machine learning running on two types of classical hardware: CPUs and GPUs. But
these are not the only options for training and inferring ML models. An exciting new generation of computer
processors is being developed to accelerate machine learning calculations. These so-called machine learning
accelerators (also called AI accelerators) have the potential to greatly increase the efficiency of ML tasks
(usually deep neural network tasks), for both training and inference. Beyond this, even the traditional-style
CPU/GPU architectures are being modified to better support ML and AI applications. Today, we’ll talk about
some of these trends.

Overview of hardware in ML. As we saw in the first lecture, the ML pipeline has many different components.

• Data collection, cleaning, labeling, and maintenance

• Training

• Hyperparameter optimization

• Testing and validation

• Inference and deployment

• ...et cetera

Hardware can help improve performance pretty much everywhere in the pipeline, and there’s interest from
hardware vendors in designing better hardware for pretty much every aspect of the ML pipeline. Two main
ways to do this:

• Adapt existing architectures to ML tasks.

• Develop brand-new architectures for ML.

Both of these methods have seen significant use in recent years.

What improvements can we hope to get from better hardware in the ML pipeline?

1



What does this mean for the statistical performance of our algorithms?

One major issue when developing new hardware for ML, and the question we should always be asking: how
is the device programmed?

• To be useful for DNN applications, we should be able to map a high-level program written in something
like TensorFlow/PyTorch/MxNet/Keras to run on the hardware.

• Ideal scenario: users don’t need to reason about the hardware that their code is running on. They just
see the speedup.

• Current state-of-the-art: users still need to give some thought to the hardware.

– For example, if the accelerator uses low-precision arithmetic, the performance of an algorithm in
full precision on a CPU may differ from the performance of the algorithm in low-precision on the
accelerator.

– But it is possible to get TensorFlow code to run on an accelerator with minimal modifications!

GPU as ML accelerator. One important thing to realize is that the only real distinction between GPUs
and ML accelerators is that GPUs weren’t originally designed for AI/ML. But there’s nothing in the archi-
tecture itself that particularly separates GPUs from more purpose-built ML accelerators. In fact, as machine
learning tasks capture more of the market for GPUs, GPU designers have been adjusting their architectures
to fit ML applications.

• For example, by supporting low-precision arithmetic.

• For example, by creating specialized compute paths for tasks common to DNN architectures.

• For example, by making it easier for multiple GPUs to communicate with each other so as to collaborate
together on a single training task.

As GPU architectures become more specialized to AI tasks, it becomes more accurate to think of them as ML
accelerators.

FPGA as ML accelerator. All computer processors are basically integrated circuit: electronic cir-
cuits etched on a single piece of silicon. Usually this circuit is fixed when the chip is designed. A field-
programmable gate array or FPGA is a type of chip that allows the end-user to reconfigure the circuit it
computes in the field (hence the name).

• Note that this doesn’t actually involve physical changes to the circuit that’s actually etched on the phys-
ical silicon of the FPGA: that’s fixed. Rather, the FPGA constructs a logical circuit that is reconfigurable
by connecting or disconnecting various parts of the circuit that is etched on its silicon.

• FPGAs were used historically for circuit simulation.

FPGAs consist of an array of programmable circuits that can each individually do a small amount of com-
putation, as well as a programmable interconnect that connects these circuits together. The large number of
programmable gates in the FPGA makes it a naturally highly parallel device.

2



Why would we want to use an FPGA instead of a GPU/GPU?

• An important property of FPGAs that distinguishes them from CPUs/GPUs: you can choose to have
data flow through the chip however you want!

– Unlike CPUs which are tied to their cache-heirarchy-based data model, or GPUs which perform
best under a streaming model.

• FPGAs often use less power to accomplish the same work compared with other architectures.

– But they are also typically slower.

When would we want to use an FPGA vs. building our own application-specific integrated circuit (ASIC) from
scratch?

• Pro for FPGA: Much cheaper to program and FPGA than the design an ASIC.

• Pro for FPGA: A single FPGA costs much less than the first ASIC you synthesize.

• Pro for FPGA: FPGA designs can be adjusted on the fly.

• Pro for ASIC: The marginal cost of producing an additional ASIC is lower if you really want to synthe-
size millions or billions of them.

• Pro for ASIC: ASICs can typically achieve higher speed and lower power.

Who uses FPGAs in machine learning?

• Main one is Microsoft’s Project Capatult/Project Brainwave1. For example, their website milestone
from 2017 says “MSR and Bing launched hardware microservices, enabling one web-scale service to
leverage multiple FPGA-accelerated applications distributed across a datacenter. Bing deployed the first
FPGA-accelerated Deep Neural Network (DNN). MSR demonstrated that FPGAs can enable real-time
AI, beating GPUs in ultra-low latency, even without batching inference requests.”

The Tensor Processing Unit. Google’s Tensor Processing Unit (TPU) made a splash in 2015 as one of
the first specialized architectures for machine learning and AI applications. The original version focused on
fast inference via high-throughput 8-bit arithmetic.

• Most of the chip is dedicated to accelerating 8-bit integer dense-matrix-dense-matrix multiplies

– Note that even though the numbers it multiples are in 8-bit, it uses 32-bit accumulators to sum
up the results.

– This larger accumulator is common in ML architectures that use low precision.

• ...with a little bit of logic on the side to apply activation functions.

The second- and third-generation TPUs are designed to also support training and can calculate in floating
point.

1https://www.microsoft.com/en-us/research/project/project-catapult/

3



How do we program a TPU?

• Google supports running TensorFlow code on TPUs. This makes it easy to train and infer deep neural
networks.

• In fact, you can now run your own programs on the TPU on Google Cloud.2

Why use a TPU instead of a CPU/GPU?

• Pro for TPU: Google has some evidence that the TPU outperforms GPUs and other accelerators on
benchmark tasks. From Google’s blog:3 “For example, it’s possible to achieve a 19% speed-up with a
TPU v3 Pod on a chip-to-chip basis versus the current best-in-class on-premise system when tested on
ResNet-50”

• Pro for TPU: Seems to have better power and somewhat better scalability than other options. E.g. you
can scale up to 256 v3 TPUs in a pod.

• Con for TPU: It ties you to Google and Google’s Cloud Platform. You can’t own a TPU.

Other ML accelerators.

Intel’s Nirvana Neural Network Processor (NNP).4

• From their website: “The Intel Nervana NNP is a purpose built architecture for deep learning. The
goal of this new architecture is to provide the needed flexibility to support all deep learning primitives
while making core hardware components as efficient as possible.”

• Built in collaboration with Facebook.

Apple’s Neural Engine within the A11 Bionic system-on-a-chip for neural networks on iPhones.

...and many others!

2https://cloud.google.com/tpu/
3https://cloud.google.com/blog/products/ai-machine-learning/mlperf-benchmark-establishes-that-google-cloud-offers-the-most-accessible-scale-for-machine-learning-training
4https://www.intel.ai/intel-nervana-neural-network-processors-nnp-redefine-ai-silicon/

4


