
Lecture 16: Gaussian Processes and Bayesian
Optimization

CS4787 — Principles of Large-Scale Machine Learning Systems

We want to optimize a function f : X → R over some set X (here the set X is the set of hyperparameters we
want to search over, not the set of examples). But f is expensive to compute, making optimization difficult.
Main idea of Bayesian optimization:

• Model f as a probability distribution.

• If we’ve computed f at parameter values x1, x2, . . . , xD, then we consider f(x1), f(x2), . . . , f(xD) to
be observed variables in the model.

• Any x that we haven’t computed f(x) for corresponds to a hidden variable in the model.

• Key insight: even though we haven’t computed f(x), the probabilistic model that we defined lets us
compute the conditional distribution

P (f(x)|f(x1), f(x2), . . . , f(xD)) .

We want to choose the probabilistic model such that this is much cheaper to compute than f(x) itself.

• We can use this conditional distribution to estimate f(x) for values of x we haven’t observed yet.

• We can also use this conditional distribution to choose the next value of x we are going to compute f(x)
at as we continue optimizing.

• Key benefit of Bayesan optimization: uses all the information from previous computations of f(x)
to choose the next point to evaluate, rather than just using information from the last or last few
computations, as is done with methods like GD and Momentum.

Two major design decisions for Bayesian optimization:

• The prior: the probability distribution over functions that we use. This encodes our assumptions about
the function f .

– The standard way to do this is with a Gaussian process prior.

• The acquision function: how we select the next point to sample, given a conditional distribution over
the values of f(x).

– Many ways to do this, as we’ll see.

Review: Gaussian processes. Recall: the multivariate Gaussian distribution in d dimensions with mean
µ ∈ Rd and covariance matrix Σ ∈ Rd×d has probability density function

P (X) =
1√

(2π)k |Σ|
· exp

(
−1

2
(X − µ)T Σ−1(X − µ)

)
;

from here it is easy to check that E [X] = µ and E
[
XXT

]
= Σ. This is the natural multidimensional analog

of the one-dimensional Gaussian distribution you are familiar with. In order for this definition to work,
we need the covariance matrix Σ to be positive semidefinite (it is, after all a covariance matrix, and all

1

covariance matrices are positive semidefinite). Just to see why: for any fixed vector u ∈ Rd

uT Σu = uTE
[
XXT

]
u = E

[
uTXXTu

]
= E

[
(XTu)2

]
≥ 0.

The average of independent vector-valued random variables tends to converge towards a multivariate Gaus-
sian distribution in the same way that the average of independent scalar-valued random variables tends to
converge towards a Gaussian distribution in one dimension. This is called the Multidimensional Central Limit
Theorem and it’s a natural extension of the 1-D CLT you all know and love. When we are doing hyperparam-
eter optimization to minimize some empirical risk, that empirical risk evaluated at many different points is
the average of a bunch of component loss functions. That is,f(x1)

...
f(xD)

 =
1

n

n∑
i=1

fi(x1)
...

fi(xD)

so it’s natural to suspect that this vector of empirical risk values would be approximately Gaussian distributed.
So, we’d like to use a multidimensional Gaussian distribution as the prior for Bayesian optimization. The
problem: there are usually infinitely many possible settings for the hyperparameters (i.e. X is an infinite set
in most cases). And multivariate Gaussian distributions assume a finite number of dimensions. The solution
to this is to use what’s called a Gaussian process: this is the natural infinite-dimensional analog of the
multidimensional Gaussian. Typically, we use the all-zeros vector for the mean µ, and replace the covariance
matrix Σ with a Kernel function K.1 If f is the function we’re modeling, then this is equivalent to assuming
that for any xi and xj ∈ X ,

E [f(xi)] = 0 and E [f(xi) · f(xj)] = K(xi, xj).

Importantly, here this expected value represents an expectation over our belief about what the value of the
function f is, not an expectation over the random sampling of the dataset or any randomness that may exist
in our training algorithm.

Why does this function have to be a kernel? Recall that kernels had two properties: symmetry and positive
semidefiniteness. The symmetry here is needed because the expression f(xi) · f(xj) is symmetric. And the
positive semidefiniteness is needed because any covariance matrix must be positive semidefinite (even, it
turns out, if it is infinite-dimensional).

Important property of Gaussian processes. The marginal distribution of a finite number of variables of
a Gaussian process is a multivariate Gaussian distribution. That is, if f is a Gaussian process, then for any
x1, x2, . . . , xD ∈ X f(x1)

...
f(xD)

 is multivariate-Gaussian-distributed with mean µ = 0

and covariance Σ =

K(x1, x1) K(x1, x2) · · · K(x1, xD)
...

...
. . .

...
K(xD, x1) K(xD, x2) · · · K(xD, xD)

 . (1)

In particular, this lets us find the marginal distribution of f(x∗) at a new test value x∗ conditioned on the
values of the function f we’ve already observed. Explicitly, if we define Σ as above in (1), define the vector
k∗ as

k∗ =
[
K(x1, x∗) K(x2, x∗) · · · K(xD, x∗)

]T
,

1Now you see why I brought kernels back up in the last lecture.

2

and if y =
[
y1 y2 · · · yD

]T
is the vector of observations we’ve made so far then we can write the marginal

distribution of f(x∗) as

f(x∗)|(f(x1) = y1, f(x2) = y2, · · · , f(xD) = yD) ∼ N (kT
∗ Σ−1y,K(x∗, x∗)− kT

∗ Σ−1k∗)

where N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.

What is the computational cost of computing the mean and variance of these marginal distributions
for N different test points x∗? How much memory is needed? Suppose that the kernel function K takes
Θ(d) time to compute (for some constant d).

Gaussian processes as a prior for Bayesian optimization. To use a Gaussian process for Bayesian opti-
mization, just let the domain of the Gaussian process X be the space of hyperparameters, and define some
kernel that you believe matches the similarity of two hyperparameter assignments. Typically, you want to
set the kernel based on your intuition about the problem. You can also set it based on prior work in the
literature...as usual the kernel can become another hyperparameter (or hyper-hyperparameter) you need
to set. Then the Gaussian process can be used as a prior for the observed and unknown values of the loss
function f (as a function of the hyperparameters).

Bayesian optimization.

Algorithm 1 Bayesian optimization with Gaussian process prior
input: loss function f , kernel K, acquisition function a, loop counts Nwarmup and N
. warmup phase
ybest ←∞
for i = 1 to Nwarmup do

select xi via some method (usually random sampling)
compute exact loss function yi ← f(xi)
if yi ≤ ybest then

xbest ← xi
ybest ← yi

end if
end for
for i = Nwarmup + 1 to N do

update kernel matrix Σ ∈ Ri×i according to (1)
let µ(x∗) and σ(x∗) denote the expected value and standard deviation, respectively, of f(x∗) under the

Gaussian process model, conditioned on all the previous observations of f(xi) = yi
xi ← arg minx∗ a(µ(x∗), σ(x∗), ybest)
compute exact loss function yi ← f(xi)
if yi ≤ ybest then

xbest ← xi
ybest ← yi

end if
end for
return xbest

3

The acquisition function. Determines how we search for new points. There are a few common acquisision
functions that are used for machine learning. For a Gaussian process prior, they are generally a function of
three things: the mean of the hidden variable f(x∗), the standard deviation of f(x∗), and the best value seen
so far during optimization, ybest.

Probability of improvement. The probability of improvement (PI) acquisition function asks us to maximize
the probability that we will observe an improvement from the next point searched. That is, it tries to
maximize the probability that the xi that we test will be our new “best” xi. This probability is

P (f(x∗) < ybest) = P

(
f(x∗)− µ(x∗)

σ(x∗)
<
ybest − µ(x∗)

σ(x∗)

)
= Φ

(
ybest − µ(x∗)

σ(x∗)

)
,

where Φ is the cumulative distribution function of the standard Gaussian distribution. Since we’re trying to
maximize this, we can use the negation of this in the Bayesian optimization algorithm as an activation func-
tion (alternatively, we could not negate and just maximize instead of minimize in the Bayesian optimization
algorithm description—it’s equivalent).

aPI(ybest, µ, σ) = −Φ

(
ybest − µ

σ

)

Expected improvement. The expected improvement (EI) acquisition function asks us to minimize the
expected improvement in the value of the new ybest after the next point is searched. This expected value is

E [min(f(x∗)− ybest, 0)] = E

[
min

(
f(x∗)− µ(x∗)

σ(x∗)
− ybest − µ(x∗)

σ(x∗)
, 0

)]
· σ(x∗).

To simplify this further, we need an expression for Eu [min(u− c, 0)] when u is standard-Gaussian-distributed
i.e. u ∼ N (0, 1). We can get this by solving the integral, where φ is the probability distribution function of
the Gaussian distribution.

Eu [min(u− c, 0)] =

∫ c

−∞
(u− c) · φ(u) du = [−φ(u)− c · Φ(u)]

c
−∞ = −φ(c)− c · Φ(c).

It follows that we can let our acquisition function be

aEI(ybest, µ, σ) = −
(
φ

(
ybest − µ

σ

)
+
ybest − µ

σ
· Φ
(
ybest − µ

σ

))
· σ.

Once again this is an exact expression we can compute easily from µ, σ, and ybest.

Lower confidence bound. Another common type of activation function is the lower confidence bound acti-
vation function, which is designed to minimize regret over the course of optimization. For some parameter
κ (not the condition number!) this activation function is defined as

aLCB(ybest, µ, σ) = µ− κ · σ.

Here, the parameter κ trades off between exploration and exploitation. A small κ leads to more exploitation,
whereas a large κ explores more high-variance points at which less is known about the value of the function.

To think about as we leave off: what are the main computational costs of hyperparameter optimiza-
tion? Which aspects of the system still need to be determined before we can actually run this algorithm in
practice?

4

