
Machine Learning for Data Science (CS 4786)

Lecture 11-12: Clustering, Single-link algorithm, K-means Algorithm

The text in black outlines main ideas to retain from the lecture. The text in blue
give a deeper understanding of how we “derive” or get to the algorithm or method.
The text in red are mathematical details for those who are interested. But is not
crucial for understanding the basic workings of the method.

1 Representing Data: Feature Vectors

For most of this course we shall assume that data provided to us as feature vectors. That is,
each data point is represented as a d-dimensional vector (d numbers). Specifically we assume data
points are provided as x1, . . . ,xn where each xt ∈ Rd is a d-dimensional vector. The process of
converting given data representation into feature vectors that capture relevant information about
the data provided is known as feature extraction. Below are two very naive examples of feature
vectors extracted from images and text.

Figure 1: Image as vector

In the above, an image that is of size K × K is converted to a vector of size K2 by simply
having each entry of the vector corresponding to a pixel in the original image with value of that
entry being represented by intensity or color of the pixel. (for a color image the vector will be of
size 3K2) so that each of RGB values have a corresponding entry in the feature vector.

Above is an example of bag-of-words feature representation of documents where each document
is represented by a vector whose dimensionality is that of number of words in the lexicon (number

1

Figure 2: Bag of words feature for documents

of words in the english dictionary for english documents for example). Each entry of the vector
for a given document, corresponds to one word in the lexicon and the value for that entry is the
number of times the word appears in the given document.

2 Clustering

Clustering corresponds to grouping points so that points that are similar are in the same group and
dissimilar points are in different groups. To formalize this, a K-ary clustering of points x1, . . . ,xn

is partitioning the n points into K groups. We will use two alternative notations to represent a
K-ary clustering of points. First is by a K-partition of the n points given by C1, . . . , CK disjoint
subsets of {1, . . . , n} such that

⋃K
k=1Ck = {1, . . . , n}. The alternative representation is as cluster

assignment function c that maps each data point to one of clusters 1 to K. That is c(xt) = j implies
that according to clustering c, point xt belongs to cluster j. We will further use the representation
nj = |Cj | the number of points in cluster j.

2.1 Various Clustering Objectives

We shall assume that given two points xt and xs, dissimilarity(xt,xs) is a function that measures
dissimilarity between points xt and xs. As an example, think of dissimilarity(xt,xs) as the distance
or squared distance between the points. The farther they are the more dissimilar they are. Below
are a few possible clustering objectives, that is objectives our clustering assignments will optimize
for.

1. Minimize within-cluster scatter

2

M1 =

K∑
j=1

∑
xs,xt∈Cj

dissimilarity(xs,xt)

2. Maximize between-cluster scatter

M2 =
∑

xs,xt:c(xs)6=c(xt)

dissimilarity(xs,xt)

3. Maximize smallest between-cluster distance

M3 = min
xs,xt:c(xs)6=c(xt)

dissimilarity(xs,xt)

4. Minimize largest within-cluster distance

M4 = max
j∈[K]

max
xs,xt∈Cj

dissimilarity(xs,xt)

5. Minimize total within-cluster average scatter

M5 =

K∑
j=1

∑
xs∈Cj

dissimilarity(xs, Cj) =

K∑
j=1

∑
xs∈Cj

1

nj

∑
xt∈Cj

dissimilarity(xs,xt)

6. Minimize total within-cluster variance: rj = 1
nj

∑
x∈Cj

x

M6 =
K∑
j=1

∑
xt∈Cj

dissimilarity(xt, rj)

M2 Versus M3 The objective M2 aims at maximizing total between cluster scatter/dissimilarity
and M3 aims at maximizing minimum between cluster scatter/dissimilarity. These two objectives
are both equally valid ones which we shall demonstrate now.

Example where M2 is better than M3: (outliers are bad for M3)
Consider the set of points placed in 2D as the ones depicted in the figure below:

Figure 3: M2 better than M3

In the figure above, notice that maximizing M3 would lead to the outlier blue point being its own
cluster and all other points being one cluster. However, maximizing M2 would lead to the clustering
shown in above figure. While this might seem a bit toyish, the example can be made more real
by noticing that if we take two gaussians with equal variance and have them separated, then, as
we increase number of points sampled in each cluster will ensure that we have an outlier whose
distance to other points in larger than separation. In fact, if we consider higher dimensional cases,

3

Figure 4: M2 better than M3

this difference is even more pronounced. However, as long as number of points in the two clusters
are roughly the same, M2 will correctly cluster the two gaussians.
Example where M3 is better than M2: (long connected clusters are bad for M2)
Consider the set up of points in the figure below: Say x is the distance between the two rows and y is
the distance between two columns and assume x > y. Then it is easy to check that first, maximizing
objective M3 gives the clustering indicated in the figure above. This is because, distance between
columns is smaller then distance between the two rows and so M3 would prefer making each row it
own cluster. However, depending on number of points and how large x is relative to y, maximizing
M2 leads to one cluster be the left half of the points and other right half as depicted in figure below.

Figure 5: M2 better than M3

As an example, in the figure below if x is 2 times y, optimizing M2 would lead to the clustering
shown above.

Minimizing M1 ≡ Maximizing M2 Why is this?
For any given set of points x1, . . . ,xn, irrespective of clustering assignments we use, the quantity∑

t,s:t6=s dissimilarity(xt,xs) is a constant. But note that

M1 + M2 =
∑

t,s:t6=s

dissimilarity(xt,xs)

Hence Minimizing M1 is same as minimizing
∑

t,s:t6=s dissimilarity(xt,xs) −M2 which is same as
maximizing M2.

4

3 Single-Link Clustering Algorithm

In general minimizing or maximizing given objectives might not be computationally efficiently
possible. However now we review the objective of maximizing M3 and see that this objective can
be achieved by a simple algorithm called the single-link clustering objective described below.

• Initialize n clusters with each point xt to its own cluster

• Until there are only K clusters, do

1. Find closest two clusters and merge them into one cluster

2. Update between cluster distances (called proximity matrix)

Theorem 1. Single link clustering algorithm maximizes objective M3.

Proof. We will prove this by contradiction. First for simplicity we shall assume that distances
between all pairs of points are unique so we don’t worry about tie breaking. Now, just as in the
animation depicted in lecture slides, on every round, we look at distance between clusters and
merge the two clusters that are closest. Here distance between two clusters is given by minimum
distance between pairs of points where one point is in first cluster and other is in the second. Now,
each time we merge two points, let us draw an edge between the closest pair of points, where first
point is in first merged cluster and second is in the second merged cluster. We will refer to these
points as merged points. A cluster will consist of points, all connected by edges corresponding to
merged points and further, this graph will be a tree.

Now, say c was the clustering returned by single link clustering and let c′ be the clustering that
maximizes our objective M3. If the two clusterings didn’t match then there has to be points xt and
xs such that, c(xt) = c(xs) but c′(xt) 6= c′(xs). The key observation for the proof is that distances

of merged points thus far, under single link algorithm are smaller than minimum between cluster
distances under the single link algorithm. That is,

min
t,s:c(xt)6=c(xs)

d(xt,xs) > Distance of merged points so far

This is because we merge closest two clusters at every step to form new clusters.

Now, since the two points xt and xs are in the same cluster according to single link algorithm,
there should be a path between xt and xs in the tree consisting of merged edges. This path is
depicted in the Figure 6.

Now consider the distance between cluster with id c′(xt) and points in cluster with id c′(xs)
under clustering c′. This distance is smaller than distance of at least one of the merged distances.
Specifically in the figure this is depicted by edge ab. However, by our observation, all merged
distances are smaller than minimum inter-cluster distance according to c. This shows that minimum
inter cluster distance according c′ is smaller than minimum inter-cluster distance according to c.
Thus single link clustering has a larger value for M3 than c′ which would be a contradiction since
c′ is said to be the optimal solution. Hence c = c′.

5

Figure 6: xt and xs are in same cluster according single link but not c′

4 K-means Algorithm

The second algorithm we consider is the k-means algorithm which aims at minimizing objective
M6 and equivalently M6. The algorithm is as stated below.

• For all j ∈ [K], initialize cluster centroids r̂0j randomly and set m = 1

• Repeat until convergence (or until patience runs out)

1. For each t ∈ {1, . . . , n}, set cluster identity of the point

ĉm(xt) = argmin
j∈[K]

‖xt − r̂m−1j ‖2

2. For each j ∈ [K], set new representative as

r̂mj =
1

|Ĉm
j |

∑
xt∈Ĉm

j

xt

3. m← m + 1

4.1 M5 Versus M6 for euclidean distance squared

Theorem 2. When dissimilarity(x,y) = d(x,y)2 = ‖x− y‖2, then M5 ≡M6.

Proof. We shall show first that objectives M5 and M6 are equivalent when dissimilarity is measured

6

by euclidean distance squared.

M5 =

K∑
j=1

∑
xs∈Cj

dissimilarity(xs, Cj)

=

K∑
j=1

∑
xs∈Cj

1

nj

∑
xt∈Cj

dissimilarity(xs,xt)

=

K∑
j=1

∑
xs∈Cj

1

nj

∑
xt∈Cj

‖xs − xt‖2

=

K∑
j=1

∑
xs∈Cj

1

nj

∑
xt∈Cj

‖xs − rj + rj − xt‖2

=

K∑
j=1

1

nj

∑
xs∈Cj

∑
xt∈Cj

(
‖xs − rj‖2 + ‖rj − xt‖2 + 2(xt − rj)

>(rj − xs)
)

=

K∑
j=1

1

nj

nj

∑
xs∈Cj

‖xs − rj‖2 + nj

∑
xt∈Cj

‖rj − xt‖2 + 2
∑

xs∈Cj

∑
xt∈Cj

(xt − rj)
>(rj − xs)

=

K∑
j=1

 ∑
xs∈Cj

‖xs − rj‖2 +
∑

xt∈Cj

‖rj − xt‖2 + 2
∑

xs∈Cj

(
1

nj

∑
xt∈Cj

xt − rj)
>(rj − xs)

=

K∑
j=1

 ∑
xs∈Cj

‖xs − rj‖2 +
∑

xt∈Cj

‖rj − xt‖2 + 2
∑

xs∈Cj

(rj − rj)
>(rj − xs)

=

K∑
j=1

 ∑
xs∈Cj

‖xs − rj‖2 +
∑

xt∈Cj

‖rj − xt‖2

= 2

K∑
j=1

∑
xs∈Cj

‖xs − rj‖2

= 2M6

4.2 K-means algorithm minimizes objective M6

It turns out that the k-means algorithm is grared towards minimizing objective M6. To see this,
we shall rewrite the objective M6 as follows:

M6 =
K∑
j=1

∑
s∈Cj

∥∥∥∥∥∥xs −
1

nj

∑
t∈Cj

xt

∥∥∥∥∥∥
2

= min
r1,...,rK

K∑
j=1

∑
s∈Cj

‖xs − rj‖2

Lemma 3. For any vector x, we have that,

1

nj

∑
s∈Cj

‖xs − x‖2 =
1

nj

∑
s∈Cj

∥∥∥∥∥∥xs −
1

nj

∑
t∈Cj

xt

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥x− 1

nj

∑
t∈Cj

xt

∥∥∥∥∥∥
2

7

Proof.

1

nj

∑
s∈Cj

‖xs − x‖2

=
1

nj

∑
s∈Cj

∥∥∥∥∥∥xs −
1

nj

∑
t∈Cj

xt +
1

nj

∑
t∈Cj

xt − x

∥∥∥∥∥∥
2

=
1

nj

∑
s∈Cj

∥∥∥∥∥∥xs −

1

nj

∑
t∈Cj

xt

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

nj

∑
t∈Cj

xt − x

∥∥∥∥∥∥
2

+ 2

xs −
1

nj

∑
t∈Cj

xt

> 1

nj

∑
t∈Cj

xt − x

=
1

nj

∑
s∈Cj

∥∥∥∥∥∥xs −
1

nj

∑
t∈Cj

xt

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

nj

∑
t∈Cj

xt − x

∥∥∥∥∥∥
2

+ 2
1

nj

∑
s∈Cj

xs −
1

nj

∑
t∈Cj

xt

> 1

nj

∑
t∈Cj

xt − x

=

1

nj

∑
s∈Cj

∥∥∥∥∥∥xs −
1

nj

∑
t∈Cj

xt

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

nj

∑
t∈Cj

xt − x

∥∥∥∥∥∥
2

+ 2

 1

nj

∑
s∈Cj

xs −
1

nj

∑
t∈Cj

xt

> 1

nj

∑
t∈Cj

xt − x

=

1

nj

∑
s∈Cj

∥∥∥∥∥∥xs −
1

nj

∑
t∈Cj

xt

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

nj

∑
t∈Cj

xt − x

∥∥∥∥∥∥
2

The above lemma easily shows us that rj = 1
nj

∑
t∈Cj

xt is the minimizer of
∑

s∈Cj
‖xs−rj‖2. This

in turn shows us that as claimed earlier,

M6 =
K∑
j=1

∑
s∈Cj

∥∥∥∥∥∥xs −
1

nj

∑
t∈Cj

xt

∥∥∥∥∥∥
2

= min
r1,...,rK

K∑
j=1

∑
s∈Cj

‖xs − rj‖2

Now the key idea to see why k-means is optimizing objective M6 is to treat k-means algorithm as
a procedure that picks cluster assignments and centers r1, . . . , rK jointly to minimize with respect
to cluster assignment and the K centers, the objective

O(c, r1, . . . , rK) =

K∑
j=1

∑
s∈Cj

‖xs − rj‖2

The following theorem formalizes the notion that k-means aims at minimizing the above objective:

Theorem 4. For any iteration m of the k-means algorithm, we have that

O(ĉm, r̂m1 , . . . , r̂mK) ≤ O(ĉm−1, r̂m−11 , . . . , r̂m−1K)

Proof. For any arbitrary choice of centroids rm−11 , . . . , rK , note that by definition of ĉm,

O(ĉm, rm−11 , . . . , rm−1K) = min
c

O(c, rm−11 , . . . , rK) ≤ O(ĉm−1, rm−11 , . . . , rm−1K)

8

This is because we assign each point to centroid closest to it.
On the other hand, by Lemma 3 we have that for any cluster assignment, the means of points in
each cluster is the optimal centroid and so, specifically,

O(ĉm, rm−11 , . . . , rm−1K) =
K∑
j=1

∑
s∈Cm

j

∥∥∥xs − rm−1j

∥∥∥2

≥ min
r1,...,rK

K∑
j=1

∑
s∈Cm

j

‖xs − rj‖2

= min
r1,...,rK

K∑
j=1

∑
s∈Cm

j

∥∥∥∥∥∥∥xs −
1

|Ĉm
j |

∑
t∈Ĉm

j

xt

∥∥∥∥∥∥∥
2

= O(ĉm, rm1 , . . . , rmK)

Combining the two we conclude the theorem statement.

9

