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Example: 

But you don’t observe location
(dark room)

You hear how close the bot is!

What you hear:

Can you catch the Bot?

+ noise

In time?



HIDDEN MARKOV MODEL (HMM)

S1 S2 S3

X1 X2 X3

Xt’s are what you hear (observation) 

St’s are the unseen locations (states) 

Eg: for m x m grid we have, K = m  states2

Number of alphabets = # colors you can observe
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S1 S2 S3

X1 X2 X3

Eg: for m x m grid we have, K = m  states2

Transition matrix is K x K (too large)

Use sampling to do approximate inference
Number of samples n << m4



Inference Question

• Can we compute (efficiently and approximately) 

• We cant afford too much time to compute since we 
need to move the bot in time 

• We can perform inference via sampling

P (St|x1, . . . , xt�1)
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Who is more likely to win the game?
Compute sum of exact probabilities of all possible 
sequence of moves leading to Player 1’s victory
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Who is more likely to win the game?

Throw dice and simulate multiple games, see who wins more often



INFERENCE VIA SAMPLING



INFERENCE VIA SAMPLING

• Draw n samples from the sampling distribution



INFERENCE VIA SAMPLING

• Draw n samples from the sampling distribution

• Compute approximate probabilities by computing 
empirical frequencies



INFERENCE VIA SAMPLING

• Draw n samples from the sampling distribution

• Compute approximate probabilities by computing 
empirical frequencies

• Why sampling?



INFERENCE VIA SAMPLING

• Draw n samples from the sampling distribution

• Compute approximate probabilities by computing 
empirical frequencies

• Why sampling?

• Getting multiple samples often faster than 
computing exact probabilities



INFERENCE VIA SAMPLING

• Draw n samples from the sampling distribution

• Compute approximate probabilities by computing 
empirical frequencies

• Why sampling?

• Getting multiple samples often faster than 
computing exact probabilities

• Inference is key step in learning



INFERENCE VIA SAMPLING

Law of large numbers: empirical distribution using large samples
approximates the true distribution

Some approaches:

Rejection sampling: sample all the variables, retain only ones that
match evidence

Importance sampling: Sample from a different distribution but
then apply correction while computing empirical marginals

Gibbs sampling: iteratively sample from distributions closer and
closer to the true one



• Getting a sample from HMM given parameters is 
easy! 

• Its accounting for observations (conditionally 
sampling given observations) that is hard!  

• Can we use the fact that sampling from HMM is 
easy inference?
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Rejection sampling: Reject samples that don’t match observations

We can do this sequentially!
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Eg: say observations were 

Problem: Most samples rejected

Multiple samples simultaneously.



IMPORTANCE SAMPLING

We really want to draw from distribution P.
But we can only draw from distribution Q easily
Trick:

Draw x1, . . . ,xn ∼ Q
Re-weight each sample xt by P(X = xt)�Q(X = xt)
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Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)

P (1) = 0.9, 8j 6= 1 P (j) = 0.1/5



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)

P (1) = 0.9, 8j 6= 1 P (j) = 0.1/5



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)

P (1) = 0.9, 8j 6= 1 P (j) = 0.1/5 8j Q(j) = 1/6



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)

Set = {2, 4, 6}

P (1) = 0.9, 8j 6= 1 P (j) = 0.1/5 8j Q(j) = 1/6



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)

Set = {2, 4, 6}

P (1) = 0.9, 8j 6= 1 P (j) = 0.1/5 8j Q(j) = 1/6

What is P(Set)?



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)

Set = {2, 4, 6}

P (1) = 0.9, 8j 6= 1 P (j) = 0.1/5 8j Q(j) = 1/6

1

n

nX

t=1

1{xt 2 {2, 4, 6}}P (xt)

Q(xt)
=

1

n

nX

t=1

1{xt 2 {2, 4, 6}}0.1/5
1/6

What is P(Set)?



IMPORTANCE SAMPLING

Why does it work?

EX∼P[f (X)] =�
x

P(X = x)f (x)
=�

x
Q(X = x)� P(X = x)

Q(X = x) f (x)�
= EX∼Q � P(X)

Q(X) f (X)�
≈ 1

n

n�
t=1

P(X = xt)
Q(X = xt) f (xt)

Example: f (X) = 1{X ∈ Set}, then EX∼P[f (X)] = P(X ∈ Set)
Hence, using importance weighted sampling,

P(X ∈ Set) ≈ 1
n

n�
t=1

1{xt ∈ Set} P(X=xt)
Q(X=xt)

Set = {2, 4, 6}

P (1) = 0.9, 8j 6= 1 P (j) = 0.1/5 8j Q(j) = 1/6

1

n

nX

t=1

1{xt 2 {2, 4, 6}}P (xt)

Q(xt)
=

1

n

nX

t=1

1{xt 2 {2, 4, 6}}0.1/5
1/6
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What is P(Set)?
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Eg: say observations were 

Importance weighting:  weight samples

P(    | S3=9)    P(    | S1=13)    P(    | S2=8)    P(    | S6=14)    P(    | S5=19)    P(    | S4=24)    x x x x x
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HMM PARTICLE FILTER

Use multiple samples and track each ones weights.

P(    | S3)    P(    | S6)P(    | S5)    P(    | S4)    

• This is same as 6 separate samples

• Instead of tracking each sample’s weight, resample 
according to weights

• Problem: Too many samples have negligible weight!
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HMM PARTICLE FILTER

Use multiple samples and track each ones weights.

P(    | S3)    

• On every round, transfer particles from previous states 
according to transition probability

• Resample particles according to P(observation|state)

• Use new particles to proceed

P(    | S6)P(    | S5)    P(    | S4)    

Instead of tracking each one, resample!
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Particle Filtering
• Without resampling, we carry many particles with 

very small probabilities

• too many samples needed for a good estimate

• By resampling, we got rid of samples with very 
small probabilities

• Hence fewer samples suffice



• Inference time only depends on number of samples 

• Of course more the samples the better accuracy 

• Often we don’t need too many samples. Why ?

HMM PARTICLE FILTER

Use multiple samples and track each ones weights.
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Gibbs Sampling
• Repeat n times for, n samples,

• Start with arbitrary value for (latent) variables

• Replace each variable by new sample from 
P(Variable| all other variables)

• Go over all (latent) variables multiple times

• Return final sample of the N variables



Gibbs Sampling
P (St = k|S1 = s1, . . . , St�1 = st�1, St+1 = st+1, . . . , SN = sN , X1 = x1, . . . , XN = xN )

/ P (S1 = s1, . . . , St�1 = st�1, St = k, St+1 = st+1, . . . , SN , X1 = x1, . . . , XN = xN )

/
t�1Y

i=1

P (Si = si|Si�1 = si�1)P (Xi = xi|Si = si)⇥ P (St = k|St�1 = st�1)P (Xt = xt|St = k)

⇥
NY

j=t+1

P (Sj = sj |Sj�1 = sj�1)P (Xj = xj |Sj = sj)

/ P (St = k|St�1 = st�1)P (Xt = xt|St = k)P (St+1 = st+1|St = k)

=
P (St = k|St�1 = st�1)P (Xt = xt|St = k)P (St+1 = st+1|St = k)

PK
j=1 P (St = j|St�1 = st�1)P (Xt = xt|St = j)P (St+1 = st+1|St = j)
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