Machine Learning for Data Science (CS4786) Lecture 19

Hidden Markov Models

Probabilistic Model

z Latent Variables
 Observed variables
 ,

GRaphical MODELS

- Abstract away the parameterization specifics
- Focus on relationship between random variables

Relationship Between Variables

Let $X=\left(X_{1}, \ldots, X_{N}\right)$ be the random variables of our model (both latent and observed)

- Joint probability distribution over variable can be complex esp. if we have many complexly related variables
- Can we represent relation between variables in conceptually simpler fashion?
- We often have prior knowledge about the dependencies (or conditional (in)dependencies) between variables

GRaphical MODELS

- A graph whose nodes are variables X_{1}, \ldots, X_{N}
- Graphs are an intuitive way of representing relationships between large number of variables
- Allows us to abstract out the parametric form that depends on θ and the basic relationship between the random variables.

Draw a picture for the generative story that explains what generates what.

GRaphical MODELS

- Variables X_{i} is written as
- Variables X_{i} is written as
X_{i} if X_{i} is observed
X_{i} if X_{i} is latent
- Parameters are often left out (its understood and not explicitly written out). If present they don't have bounding objects
- An directed edge
is drawn connecting every parent to its child (from parent to child)

Example: Sum of Coin Flips

$S_{1} \rightarrow S_{2}$

EXAMPLE: NAIVE BAYES CLASSIFIER

Eg. Spam classification
-9:

Hidden Markov Model (HMM)

- Speech recognition
- Natural language processing models
- Robot localization
- User attention modeling
- Medical monitoring

Time! ... sequence of observations

Markov Model

- Each node is identically distributed given its predecessor (stationary)
- The values the nodes take are called states
- Parameters?
- $P\left(S_{1}\right)$ the initial probability table
- $\mathrm{P}\left(\mathrm{S}_{\mathrm{t}} \mid \mathrm{S}_{\mathrm{t}-1}\right)$ the transition probabilities

Markov Model

Bot tends to follow outlined path, but with some probability jumps to arbitrary neighbor

- Number of states: 25 (one for each location)
- For white boxes probability of jumping to any of the 4 neighbors is same $1 / 4$
- For Blue boxes, probability of following path is 0.9 and jumping to some other neighbor is 0.0333333

Markov Model

- If we observe the bot long enough, we get an estimate of its behavior (the transition table of jumping from state to state)
- If we observe enough number of times, we can also estimate initial distribution over states

MARKOV MODEL

- Inference question: what is probability that we will be in state k at time t? $P\left(S_{t}=k\right)$?

Answer:

$$
\begin{aligned}
P\left(S_{t}=k\right) & =\sum_{s_{1}=1}^{K} \ldots \sum_{s_{t-1}=1}^{K} P\left(S_{1}=s_{1}, \ldots, S_{t-1}=s_{t-1}, S_{t}=k\right) \\
& =\sum_{s_{1}=1}^{K} \cdots \sum_{s_{t-1}=1}^{K} \prod_{i=1}^{t-1}\left(P\left(S_{i}=s_{i} \mid S_{i-1}=s_{i-1}\right) \times P\left(S_{t}=k \mid S_{t-1}=s_{t-1}\right)\right)
\end{aligned}
$$

For every t we can repeat the above or...

$$
P\left(S_{t}=k\right)=\sum_{s_{t-1}=1}^{K} P\left(S_{t}=k \mid S_{t-1}=s_{t-1}\right) P\left(S_{t-1}=s_{t-1}\right)
$$

recursively compute probability of previous state

Markov Model

- As time goes by, $\mathrm{P}\left(\mathrm{S}_{\mathrm{t}}=\mathrm{k}\right)$ approaches a fixed distribution called stationary distribution
- Without any further observations, you are unlikely to find the bot on a new run (only by luck)

Hidden Markov Model (HMM)

Same example:

But you don't observe location (dark room)

You hear how close the bot is!

X_{t} 's are loudness of what you hear

Hidden Markov Model (HMM)

- Both during the initial training/estimation phase, you never see the bot you only hear it
- But you hear it at any point in time
- We will come back to learning next class.
- What is probability that bot will be in state k at time t given the entire sequence of observations?

$$
P\left(S_{t}=k \mid X_{1}, \ldots, X_{N}\right) ?
$$

Hidden Markov Model (HMM)

Same example:
But you don't observe location (dark room)

You hear how close the bot is!

What you hear:

Can you catch the Bot?

Hidden Markov Model (HMM)

Xt's are what you hear (observation)
St's are the unseen locations (states)

Eg: for $n \times n$ grid we have, $K=n^{2}$ states
Number of alphabets $=5$
(colors you can observe)

What are the parameters?

Hidden Markov Model (HMM)

- What is probability that bot will be in location k at time t given the entire sequence of observations?

$$
P\left(S_{t}=k \mid X_{1}, \ldots, X_{N}\right) ?
$$

Inference in HMM

$$
\begin{aligned}
P\left(S_{t}\right. & \left.=k \mid X_{1}, \ldots, X_{N}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k \mid X_{1}, \ldots, X_{t}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(X_{t} \mid S_{t}=k, X_{1}, \ldots, X_{t-1}\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k\right) P\left(X_{t} \mid S_{t}=k\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)
\end{aligned}
$$

We know $P\left(X_{t} \mid S_{t}=k\right)$'s and $P\left(S_{t} \mid S_{t-1}\right)$
Compute $P\left(X_{t+1}, \ldots, X_{N}\right)$ and $P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)$ recursively.

Inference in HMM

$\operatorname{message}_{S_{t-1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)$

$$
\operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)
$$

$P\left(S_{t}=k \mid X_{1}, \ldots, X_{n}\right) \propto$ message $_{S_{t-1} \mapsto S_{t}}(k) \times$ message $_{S_{t+1} \mapsto S_{t}}(k) \times P\left(X_{t} \mid S_{t}=k\right)$

Inference in HMM

$\operatorname{message}_{S_{t-1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)$ $\operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)$

Inference in HMM

$\operatorname{message}_{S_{t-1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)$ $\operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)$

Learning Parameters for HMM

- Now that we have algorithm for inference, what about learning
- Given observations, how do we estimate parameters for HMM? Three guesses ...

