Machine Learning for Data Science (CS4786)

Lecture 16

Probabilistic Modeling and EM Algorithm



Announcements



Changes to Grading

Until May 12th, new last day of classes to drop or change
to S/U

Instead of Prelims 1, | will be giving out short quizzes
every Thursday via cms that will be due on Tuesday

Take home finals

Only 3 assignments and a shorter competition



PROBABILISTIC MODEL

0 cO

Py explains data

Data: x1....,X,



Weldon’s Crab dataset

o 23 attributes, 1000
measurements

 All but one attribute were
fit well by normal
distribution

e One of them looked like...

Discovered that there were two species of crabs




PROBABILISTIC MODEL

M3 — 0.25



PROBABILISTIC MODELS

@ Set of models O consists of parameters s.t. Pg for each 0 e © is a
distribution over data.

@ Learning: Estimate 0" € © that best models given data
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MAXIMUM LIKELIHOOD PRINCIPAL

Pick 0 € © that maximizes probability of observation

Reasoning:
@ One of the models in O is the correct one
@ Given data we pick the one that best explains the observed data

@ Equivalently pick the maximum likelihood estimator,

OpmLE = argmaxy g log Pe(x1, .. ., Xp)

Often referred to as frequentist view



MAXIMUM LIKELIHOOD PRINCIPAL

Pick 0 € © that maximizes probability of observation

OMLE = argmaxg o logPe(x1, ..., X1)
Likelihood

@ A priori all models are equally good, data could have been
generated by any one of them
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MAXIMUM A POSTERIORI

Say you had a prior belief about models provided by P(0)
Pick 0 € © that is most likely given data

Reasoning:
@ Models are abstractions that capture our belief
@ We update our belief based on observed data
@ Given data we pick the model that we believe the most

@ Pick 0 that maximizes log P(0|x, ..., X1,)

[ want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians



MAXIMUM A POSTERIORI

Pick 0 € O that is most likely given data

Maximize a posteriori probability of model given data

Omap = argmaxy oP(0x1, .. ., X1)



THE BAYESIAN CHOICE

Don’t pick any 0" € ©

@ Model is simply an abstraction

@ We have a prosteriori distribution over models, why pick one 97

P(X|data) = » P(X,6|data) = ) P(X|0)P(f|data)
0cO 0cO



| ets get back to GMM



PROBABILISTIC MODEL



MLE FOR GMM

Say by some magic you knew cluster assignments, then

How would you compute parameters ?



MLE FOR GMM

Say we knew model parameters, how do we assign clusters?



HARD GAUSSIAN MIXTURE MODEL

e For all j € [K], initialize cluster centroids t r , ellipsoids ZO and

initial proportions 7 randomly and set m 1

@ Repeat until convergence (or until patience runs out)
@ Foreachte{l,..., n}, set cluster identity of the point

" (%) = argmax p(x, 3" L) s ()
]E

© For eachj € [K], set new representative as

cn

2 (x =) (xe —-1")" m'=—
|C | teZC: / n

Xt eCm

QO m—m+1



ignment

Pittall of Hard Ass

4 -
3




ignment

Pittall of Hard Ass

Singular




MLE FOR GMM

Say we knew model parameters, hew-do-we-assign-elusters?

what are the probabilities of
points falling in each of the clusters?

Given probability of each point belonging to each of the clusters,
how do we compute model parameters?

1 — 0.5

Q)‘b

Zl 73 = 0.25

Ok

o — 0.25



(SOFT) GAUSSIAN MIXTURE MODEL

@ For allj € [K], initialize cluster centroids f](.) and ellipsoids )A:]Q

randomly and set m =1

@ Repeat until convergence (or until patience runs out)
©Q Foreachte{l,..., n}, set cluster identity of the point

Q' (j) = pOx, B L") x " (j)

© For each € [K], set new representative as

$m Z?zl Qt(j)xt ‘\’im _ Z?:l Qt(j)(xt B f;n)(xt - f;’”)T

Py Q) S Qi)
m _ Z?zl Qt (])

’7'['.
J n

QO m—m+1



EXPECTATION MAXIMIZATION ALGORITHM

@ For demonstration we shall consider the problem of finding MLE
(MAP version is very similar)

o Initialize 8(°) arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Q; over the latent variable c; as:

Q" (¢r) = P(cilxy, 047D

(M step)

01) = argmax,_ o > Y. QYW (¢;)log P(xt, c10)

=1 c¢



EXAMPLE: EM FOR GMM

@ E step: For every k € [K],

Qt(i)(Ct =k) =P (c; =k|x;,0) = P (xife; =k, 007 1) x P(c; = k|90D)
o< (I)(x I“Lk i-1) Z(l 1)) (Z 1)

7

gaussmn p.d.f.



EXAMPLE: EM FOR GMM

@ E step: For every k € [K],

Qt(i)(Ct =k) =P (c; =k|x;,0) = P (xife; =k, 007 1) x P(c; = k|90D)
o< (I)(x I“Lk i-1) Z(l 1)) (Z 1)

7

gaussmn p.d.f.

@ M step: Given (), . . ., Q,, we need to find

. n K .
01) = argmax > QYW (k)log P(x;, ¢; = k|B)

De® =1 k=1

= argmax zn: i Qt(i) (k) (log P(x¢|c; =k,0) +log P(c; = k|0))

S =1 k=1
n

= argmax » Z Qtl) (k) (log & (x¢; W, i) + log ¢ )

T, K 21,k =1 ¢=1

=



EXAMPLE: EM FOR GMM

For every k € [K], the maximization step yields,

(l) Zt 1 Qtl) (k)xt Z(Z) _ Z?:l Qz,sl) (k) (xt - HIEZ)) (xt - H}il))
& Zt 1 Q:(k) | ¢ Z?:l Qt (k)

| n (1) I
Ttlgz) _ thl Qt ( )

n

Let us derive this!



WHY SHOULD EM WORK?

A very high level view:

@ Performing E-step will never decrease log-likelihood (or log a
posteriori)
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@ Performing M-step will never decrease log-likelihood (or log a
posteriori)



WHY SHOULD EM WORK?

Steps to show that log Lik(0()) > log Lik(8(~1)) :

Log(average) > average of Log



WHY SHOULD EM WORK?

Steps to show that log Lik(0()) > log Lik(8(~1)) :

Py (x4,
logP gy (x1, - .-, Xp) > ;Ctz: Q(l)(ct) 108( Eézl(;(c;;t))

M-step

E-step



WHY SHOULD EM WORK?

@ Likelihood never decreases

@ So whenever we converge we converge to a local optima

@ However problem is non-convex and can have many local optimal
@ In general no guarantee on rate of convergence

@ In practice, do multiple random initializations and pick the best
one!



EM Algorithm Generally

e More generally, EM can be used to learn any probabilistic
model with some Latent (unseen) variables and some

observed variables whenever

e |ts is easy to find parameters given distribution/
observation for all variables

e QGiven all parameters finding distribution for latent
variables is easy



HOw 10 choose K (no. of clusters)

e Elbow method:
« plot Objective versus K, typically it monotonically decreases.
» Pick point where there is a kink
 Intuition: look at rate of change
« Add to objective penalty (+ pen(K)) and minimize, pen increases with K
* intuition we prefer smaller number of clusters
» Use prior knowledge to pick p
e (AIC, BIC etc can been seen to be specific cases)

 We can leave the burden of choosing K to the probabilistic model



