Spectral Embedding

Consider an undirected graph $G=(V, E)$ consisting of $|V|=n$ vertices and E is the set of edges that indicate which pairs of vertices are connected. Let A be the $n \times n$ adjacency matrix of the graph where $A[i, j]=1$ if node i and node j have an edge between them. Let D be the $n \times n$ diagonal matrix with entry $D[i, i]$ indicating the degree of node i in the graph.

Question 1: Let y be any n dimensional vector (one coordinate for every node in the graph). Show that

$$
\sum_{(u, v) \in E}\left(\mathbf{y}_{u}-\mathbf{y}_{v}\right)^{2}=2 \mathbf{y}^{\top}(D-A) \mathbf{y}
$$

Question 2: This is a simple one given what we showed in question 1. Define the matrix $L=D-A$ (this is called the Laplacian matrix)

1. Show that L is positive semidefinite.
2. If we take 1 to be the all ones vector, show that $L 1=0$
