1 ISOMAP (Multidimensional Scaling)

Question 1: Say the $n \times n$ matrix D consists of squared (Euclidean) distance between all pairs of the n points. That is, $D_{i, j}$ is the squared distance between the i 'th and j 'th data point. That is, if the i 'th data point is given by vector y_{i} then

$$
D_{i, j}=\left\|\mathbf{y}_{i}-\mathbf{y}_{j}\right\|_{2}^{2}
$$

Hint: assume w.l.o.g. that the points are centered, that is there sum is the 0 vector. Notice that this is an assumption we can make for free because even if we center y 's by subtracting the mean, the inter point distances still remains the same. In this case show that:

$$
\mathbf{y}_{i}^{\top} \mathbf{y}_{j}=\frac{1}{2}\left(\frac{1}{n} \sum_{j=1}^{n} D_{i, j}+\frac{1}{n} \sum_{i=1}^{n} D_{i, j}-\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} D_{i, j}-D_{i, j}\right)
$$

2 t-SNE

Question 2: Given points $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, for any $t, s \in[n]$, let

$$
p_{t \rightarrow s}=\frac{\exp \left(-\frac{\left\|\mathbf{x}_{s}-\mathbf{x}_{t}\right\|^{2}}{2 \sigma^{2}}\right)}{\sum_{u \neq t} \exp \left(-\frac{\left\|\mathbf{x}_{u}-\mathbf{x}_{t}\right\|^{2}}{2 \sigma^{2}}\right)}
$$

Now define $P_{s, t}=\frac{p_{t \rightarrow s}+p_{s \rightarrow t}}{2 n}$ and assume $P_{t, t}=0$ for any t. Show that P is a valid probability distribution over $[n] \times[n]$.

