1 PCA Question

Assume the vectors $\mathbf{w}_{1}, \ldots, \mathbf{w}_{d}$ are all unit length vectors, i.e. $\forall i \in[d],\left\|\mathbf{w}_{i}\right\|_{2}^{2}=1$ and for any $i \neq j, \mathbf{w}_{i} \perp \mathbf{w}_{j}$, that is: $\mathbf{w}_{i}^{\top} \mathbf{w}_{j}=0$. Now say

$$
\mathbf{x}_{t}=\mu+\sum_{j=1}^{d} \mathbf{y}_{t}[j] \mathbf{w}_{j} \quad \text { and } \quad \hat{\mathbf{x}}_{t}=\mu+\sum_{j=1}^{K} \mathbf{y}_{t}[j] \mathbf{w}_{j}
$$

Question 1: For any K, we have shown that:

$$
\frac{1}{n} \sum_{t=1}^{n}\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|_{2}^{2}=\sum_{j=K+1}^{d} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}
$$

using this show that

$$
\sum_{j=1}^{d} \mathbf{w}_{j}^{\top} \Sigma \mathbf{w}_{j}=\frac{1}{n} \sum_{t=1}^{n}\left\|\mathbf{x}_{t}-\mu\right\|_{2}^{2}
$$

and hence conclude that finding orthonormal W that maximizes

$$
\sum_{k=1}^{K} \frac{1}{n} \sum_{t=1}^{n}\left(y_{t}[k]-\frac{1}{n} \sum_{s=1}^{n} y_{s}[k]\right)^{2}
$$

is equivalent to finding orthonormal W that minimizes

$$
\frac{1}{n} \sum_{t=1}^{n}\left\|\hat{\mathbf{x}}_{t}-\mathbf{x}_{t}\right\|_{2}^{2}
$$

2 Random Projection Question

Assume that the d dimensional vector \mathbf{u} is obtained by setting each of its coordinates to either +1 or -1 based on coin flips. That is, for each $i \in[d], \mathbf{u}[i]=\left\{\begin{array}{ll}+1 & \text { with probability } 1 / 2 \\ -1 & \text { with probability } 1 / 2\end{array}\right.$. Now set $y_{t}=\mathbf{x}_{t}^{\top} \mathbf{u}$ for every $t \in[n]$.

Question: For some $t, s \in[n]$, what is:

1. $\mathbb{E}\left[y_{t}-y_{s}\right]$?
2. $\mathbb{E}\left[\left(y_{t}-y_{s}\right)^{2}\right]$?
