1 PCA Handout

Given random variables X and Y, the covariance between X and Y is denoted as $\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$. To get an empirical estimate of this covariance given samples $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ we shall use the estimate:

$$
\frac{1}{n} \sum_{t=1}^{n}\left(X_{t}-\frac{1}{n} \sum_{s=1}^{n} X_{s}\right)\left(Y_{t}-\frac{1}{n} \sum_{s=1}^{n} Y_{s}\right)
$$

Now given our d dimensional data represented as d dimensional vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, the empirical covariance matrix which we shall denote by the matrix Σ is basically the matrix whose i, j 'th entry is the empirical covariance between the i 'th and j^{\prime} th coordinates of the data.

Denote the mean of these vectors by $\mu=\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}$. Show that Σ can be written as an average of outer products of vectors as:

$$
\Sigma=\sum_{t=1}^{n}\left(\mathbf{x}_{t}-\mu\right)\left(\mathbf{x}_{t}-\mu\right)^{\top}
$$

Let w be a d dimensional projection vector and the 1 dimensional projection of points $\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}$ is obtained by setting

$$
y_{t}=\mathbf{w}^{\top} \mathbf{x}_{t}
$$

If our goal is to find $\mathrm{a} \mathbf{w}$ such that w is unit length (i.e. $\|\mathrm{w}\|_{2}=1$) and spread or variance of the y 's is maximized then show that the optimization problem we need to solve is:

$$
\text { Maximize } \quad \mathbf{w}^{\top} \Sigma \mathbf{w} \quad \text { subject to }\|\mathbf{w}\|_{2}=1
$$

Start here: We need to find w s.t. $\|\mathbf{w}\|_{2}=1$ and it maximizes the spread/varinace of y 's given by:

$$
\operatorname{Variance}\left(y_{1}, \ldots, y_{n}\right)=\frac{1}{n} \sum_{t=1}^{n}\left(y_{t}-\frac{1}{n} \sum_{t=1}^{n} y_{t}\right)^{2}
$$

