Machine Learning for Data Science (CS4786) Lecture 20

Hidden Markov Models

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/

Hidden Markov Model (HMM)

Same example:
But you don't observe location (dark room)

You hear how close the bot is!

What you hear:

Hidden Markov Model (HMM)

Same example:
But you don't observe location (dark room)

You hear how close the bot is!

What you hear:

Can you catch the Bot?

Hidden Markov Model (HMM)

Xt's are what you hear (observation)
St's are the unseen locations (states)

Eg: for $\mathrm{n} \times \mathrm{n}$ grid we have, $\mathrm{K}=\mathrm{n}^{2}$ states
Number of alphabets $=5$
(colors you can observe)

Hidden Markov Model (HMM)

Xt's are what you hear (observation)
St's are the unseen locations (states)

Eg: for $n \times n$ grid we have, $K=n^{2}$ states
Number of alphabets $=5$
(colors you can observe)

Hidden Markov Model (HMM)

Hidden Markov Model (HMM)

What are the parameters?

Hidden Markov Model (HMM)

What are the parameters?
Transition Probability table: T = P(S_t|S_\{t-1\})
Emission Probabilities: $E=P\left(X _t \mid S _t\right)$
Initial State Probabilities: P(S_1)

Hidden Markov Model (HMM)

- What is probability that bot will be in location k at time t given the entire sequence of observations?

Hidden Markov Model (HMM)

- What is probability that bot will be in location k at time t given the entire sequence of observations?

$$
P\left(S_{t}=k \mid X_{1}, \ldots, X_{N}\right) ?
$$

$$
P\left(S_{t}=k \mid X_{1}, \ldots, X_{N}\right)
$$

Inference in HMM

$$
\begin{aligned}
P\left(S_{t}\right. & \left.=k \mid X_{1}, \ldots, X_{N}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k \mid X_{1}, \ldots, X_{t}\right)
\end{aligned}
$$

Inference in HMM

$$
\begin{aligned}
P\left(S_{t}\right. & \left.=k \mid X_{1}, \ldots, X_{N}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k \mid X_{1}, \ldots, X_{t}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t}\right)
\end{aligned}
$$

Inference in HMM

$$
\begin{aligned}
P\left(S_{t}\right. & \left.=k \mid X_{1}, \ldots, X_{N}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k \mid X_{1}, \ldots, X_{t}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(X_{t} \mid S_{t}=k, X_{1}, \ldots, X_{t-1}\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)
\end{aligned}
$$

InFerence in HMM

$$
\begin{aligned}
P\left(S_{t}\right. & \left.=k \mid X_{1}, \ldots, X_{N}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k \mid X_{1}, \ldots, X_{t}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(X_{t} \mid S_{t}=k, X_{1}, \ldots, X_{t-1}\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k\right) P\left(X_{t} \mid S_{t}=k\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)
\end{aligned}
$$

Inference in HMM

$$
\begin{aligned}
P\left(S_{t}\right. & \left.=k \mid X_{1}, \ldots, X_{N}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k \mid X_{1}, \ldots, X_{t}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k, X_{1}, \ldots, X_{t}\right) P\left(X_{t} \mid S_{t}=k, X_{1}, \ldots, X_{t-1}\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right) \\
& \propto P\left(X_{t+1}, \ldots, X_{N} \mid S_{t}=k\right) P\left(X_{t} \mid S_{t}=k\right) P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)
\end{aligned}
$$

We know $P\left(X_{t} \mid S_{t}=k\right)$'s and $P\left(S_{t} \mid S_{t-1}\right)$
Compute $P\left(X_{t+1}, \ldots, X_{N}\right)$ and $P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)$ recursively.

Inference in HMM

$\operatorname{message}_{S_{t-1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)$

$$
\operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)
$$

$P\left(S_{t}=k \mid X_{1}, \ldots, X_{n}\right) \propto$ message $_{S_{t-1} \mapsto S_{t}}(k) \times$ message $_{S_{t+1} \mapsto S_{t}}(k) \times P\left(X_{t} \mid S_{t}=k\right)$

Inference in HMM

$\operatorname{message}_{S_{t-1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)$ $\operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)$

Inference in HMM

$$
\begin{aligned}
& \operatorname{message}_{S_{t-1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right) \\
& \operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)
\end{aligned}
$$

Forward:

$$
P\left(X_{1}, \ldots, X_{t-1}, S_{t}=k\right)=\sum_{j=1}^{K} P\left(S_{t}=k \mid S_{t-1}=j\right) P\left(X_{t-1} \mid S_{t-1}=j\right) P\left(X_{1}, \ldots, X_{t-2}, S_{t-1}=j\right)
$$

INFERENCE IN HMM

$$
\begin{aligned}
& \operatorname{message}_{S_{t-1} \mapsto S_{t}}(k) \\
& \operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right) \\
&\left., \ldots, X_{t+1} \mid S_{t}=k\right)
\end{aligned}
$$

Forward:

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{t-1}, S_{t}=k\right)=\sum_{j=1}^{K} P\left(S_{t}=k \mid S_{t-1}=j\right) P\left(X_{t-1} \mid S_{t-1}=j\right) P\left(X_{1}, \ldots, X_{t-2}, S_{t-1}=j\right) \\
& \text { message }_{S_{t-1} \mapsto S_{t}}(k)=\sum_{j=1}^{K} P\left(S_{t}=k \mid S_{t-1}=j\right) P\left(X_{t-1} \mid S_{t-1}=j\right) \operatorname{message}_{S_{t-2} \mapsto S_{t-1}}(j)
\end{aligned}
$$

Inference in HMM

$\operatorname{message}_{S_{t-1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right)$ $\operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)$

Inference in HMM

$$
\begin{gathered}
\operatorname{message}_{S_{t-1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right) \\
\operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)
\end{gathered}
$$

Backward:

$$
P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)=\sum_{j=1}^{K} P\left(X_{n}, \ldots, X_{t+2} \mid S_{t+1}=j\right) P\left(X_{t+1} \mid S_{t+1}=j\right) P\left(S_{t+1}=j \mid S_{t}=k\right)
$$

Inference in HMM

$$
\begin{gathered}
\operatorname{message}_{S_{t-1} \mapsto S_{t}}(k)=P\left(S_{t}=k, X_{1}, \ldots, X_{t-1}\right) \\
\operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)
\end{gathered}
$$

Backward:
$P\left(X_{n}, \ldots, X_{t+1} \mid S_{t}=k\right)=\sum_{j=1}^{K} P\left(X_{n}, \ldots, X_{t+2} \mid S_{t+1}=j\right) P\left(X_{t+1} \mid S_{t+1}=j\right) P\left(S_{t+1}=j \mid S_{t}=k\right)$ $\operatorname{message}_{S_{t+1} \mapsto S_{t}}(k)=\sum_{j=1}^{K} \operatorname{message}_{S_{t+2} \mapsto S_{t+1}}(j) P\left(X_{t+1} \mid S_{t+1}=j\right) P\left(S_{t+1}=j \mid S_{t}=k\right)$

Learning Parameters for HMM

- Now that we have algorithm for inference, what about learning
- Given observations, how do we estimate parameters for HMM? Three guesses ...

EM FOR HMM (BAUM WELCH)

- EM algorithm of course, for HMM its referred to as Baum Welch algorithm
- Initialize Transition and Emission probability tables arbitrarily
- For $i=1$ to convergence:

E-step For every state variable $t \in\{1, \ldots, n\}$,
Use forward-backward algorithm to compute probabilities of latent variables given obervation
M-step Optimize weighted log likelihood as usual:

$$
\theta^{(i)}=\arg \max _{\theta \in \Theta} \sum_{S_{1} \ldots, n} P\left(S_{1, \ldots, n} \mid X_{1, \ldots, n}, \theta^{(i-1)}\right) \log P\left(X_{1, \ldots, n}, S_{1, \ldots, n} \mid \theta\right)
$$

LETS SIMPLIFY M-STEP

$$
\log P\left(X_{1, \ldots, n}, S_{1, \ldots, n} \mid \theta\right)
$$

LETS SIMPLIFY M-STEP

$$
\log P\left(X_{1, \ldots, n}, S_{1, \ldots, n} \mid \theta\right)=\log \left(\prod_{t=1}^{n} P\left(X_{t} \mid S_{t}, \theta\right) \prod_{t=1}^{n} P\left(S_{t} \mid S_{t-1}, \theta\right)\right)
$$

LETS Simplify M-STEP

$$
\begin{aligned}
\log P\left(X_{1, \ldots, n}, S_{1, \ldots, n} \mid \theta\right) & =\log \left(\prod_{t=1}^{n} P\left(X_{t} \mid S_{t}, \theta\right) \prod_{t=1}^{n} P\left(S_{t} \mid S_{t-1}, \theta\right)\right) \\
& =\sum_{t=1}^{n} \log P\left(X_{t} \mid S_{t}, \theta\right)+\sum_{t=1}^{n} \log P\left(S_{t} \mid S_{t-1}, \theta\right)
\end{aligned}
$$

LETS SIMPLIFY M-STEP

$$
\begin{aligned}
\log P\left(X_{1, \ldots, n}, S_{1, \ldots, n} \mid \theta\right) & =\log \left(\prod_{t=1}^{n} P\left(X_{t} \mid S_{t}, \theta\right) \prod_{t=1}^{n} P\left(S_{t} \mid S_{t-1}, \theta\right)\right) \\
& =\sum_{t=1}^{n} \log P\left(X_{t} \mid S_{t}, \theta\right)+\sum_{t=1}^{n} \log P\left(S_{t} \mid S_{t-1}, \theta\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{S_{1, \ldots, n}} P\left(S_{1, \ldots, n} \mid X_{1, \ldots, n}, \theta^{(i-1)}\right) \log P\left(X_{1, \ldots, n}, S_{1, \ldots, n} \mid \theta\right) \\
& =\sum_{t=1}^{n} \sum_{S_{t}=1}^{K} P\left(S_{t}=s_{t} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \log P\left(X_{t} \mid S_{t}=s_{t}, \theta\right) \\
& \quad+\sum_{t=1}^{n} \sum_{s_{t}, S_{t-1}=1}^{K} P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \log P\left(S_{t} \mid S_{t-1}, \theta\right)
\end{aligned}
$$

E-STEP

E-STEP

- Only need to compute $P\left(S_{t}=s_{t} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ and $P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ using forward-backward

E-STEP

- Only need to compute $P\left(S_{t}=s_{t} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ and $P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ using forward-backward
- First term is immediate

$$
P\left(S_{t}=s_{t} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \propto m_{S_{t-1} \mapsto S_{t}}\left(s_{t}\right) \cdot m_{S_{t+1} \mapsto S_{t}}\left(s_{t}\right) \cdot E^{(i-1)}\left[s_{t}, X_{t}\right]
$$

E-STEP

- Only need to compute $P\left(S_{t}=s_{t} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ and $P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ using forward-backward
- First term is immediate

$$
P\left(S_{t}=s_{t} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \propto m_{S_{t-1} \mapsto S_{t}}\left(s_{t}\right) \cdot m_{S_{t+1} \mapsto S_{t}}\left(s_{t}\right) \cdot E^{(i-1)}\left[s_{t}, X_{t}\right]
$$

- For second term,

$$
\begin{aligned}
& P\left(S_{t}=s_{i}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \propto m_{S_{t-1} \mapsto S_{t}}\left(s_{t}\right) T^{(i-1)}\left[s_{t-1}, s_{t}\right] P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \propto m_{S_{t-1} \mapsto S_{t}}\left(s_{t}\right) T^{(i-1)}\left[s_{t-1}, s_{t}\right] m_{S_{t-2} \mapsto S_{t-1}}\left(s_{t-1}\right) m_{S_{t} \mapsto S_{t-1}}\left(s_{t-1}\right) E^{(i-1)}\left[s_{t-1}, X_{t-1}\right]
\end{aligned}
$$

Why?

E-STEP

$$
P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)
$$

E-STEP

$$
\begin{aligned}
& P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{1, \ldots, n}, \theta^{t-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)
\end{aligned}
$$

E-STEP

$$
\begin{aligned}
& P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{1, \ldots, n}, \theta^{t-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{t, \ldots, n}, \theta^{i-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)
\end{aligned}
$$

E-STEP

$$
\begin{aligned}
& P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{1, \ldots, n}, \theta^{t-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{t, \ldots, n}, \theta^{i-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad \propto P\left(X_{t, \ldots, n} \mid S_{t}=s_{t}, S_{t-1}=s_{t-1}, \theta^{i-1}\right) \\
& \quad \quad P\left(S_{t}=s_{t} \mid S_{t-1}=s_{t-1}, \theta^{i-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)
\end{aligned}
$$

E-STEP

$$
\begin{aligned}
& P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{1, \ldots, n}, \theta^{t-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{t, \ldots, n}, \theta^{i-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \propto P\left(X_{t, \ldots, n} \mid S_{t}=s_{t}, S_{t-1}=s_{t-1}, \theta^{i-1}\right) \\
& \quad P\left(S_{t}=s_{t} \mid S_{t-1}=s_{t-1}, \theta^{i-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \propto P\left(X_{t, \ldots, n} \mid S_{t}=s_{t}, \theta^{i-1}\right) \\
& \quad T^{(i-1)}\left[s_{t-1}, s_{t}\right] P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)
\end{aligned}
$$

E-STEP

$$
\begin{aligned}
& P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{1, \ldots, n}, \theta^{t-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{t, \ldots, n}, \theta^{i-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad \propto P\left(X_{t, \ldots, n} \mid S_{t}=s_{t}, S_{t-1}=s_{t-1}, \theta^{i-1}\right) \\
& \quad \quad P\left(S_{t}=s_{t} \mid S_{t-1}=s_{t-1}, \theta^{i-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad \propto P\left(X_{t, \ldots, n} \mid S_{t}=s_{t}, \theta^{i-1}\right) \\
& \quad T^{(i-1)}\left[s_{t-1}, s_{t}\right] P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad \propto m_{S_{t-1} \mapsto S_{t}}\left(s_{t}\right) \cdot T^{(i-1)}\left[s_{t-1}, s_{t}\right] \cdot P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)
\end{aligned}
$$

E-STEP

$$
\begin{aligned}
& P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{1, \ldots, n}, \theta^{t-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \quad=P\left(S_{t}=s_{t}, \mid S_{t-1}=s_{t-1}, X_{t, \ldots, n}, \theta^{i-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \propto \\
& \quad P\left(X_{t, \ldots, n} \mid S_{t}=s_{t}, S_{t-1}=s_{t-1}, \theta^{i-1}\right) \\
& \quad P\left(S_{t}=s_{t} \mid S_{t-1}=s_{t-1}, \theta^{i-1}\right) P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \propto P\left(X_{t, \ldots, n} \mid S_{t}=s_{t}, \theta^{i-1}\right) \\
& \quad T^{(i-1)}\left[s_{t-1}, s_{t}\right] P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \propto m_{S_{t-1} \mapsto S_{t}}\left(s_{t}\right) \cdot T^{(i-1)}\left[s_{t-1}, s_{t}\right] \cdot P\left(S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right) \\
& \propto m_{S_{t-1} \mapsto S_{t}}\left(s_{t}\right) \cdot T^{(i-1)}\left[s_{t-1}, s_{t}\right] \\
& \quad m_{S_{t-2} \mapsto S_{t-1}}\left(s_{t-1}\right) \cdot m_{S_{t} \mapsto S_{t-1}}\left(s_{t-1}\right) \cdot E^{(i-1)}\left[s_{t-1}, X_{t-1}\right]
\end{aligned}
$$

BaUM WELCH ALGORITHM

Initialize T^{0}, E^{0} probability tables
For $i=1$ to convergence

BaUM WELCH AlGORITHM

Initialize T^{0}, E^{0} probability tables
For $i=1$ to convergence

- E-step:
- Run Forward-Backward algorithm and compute messages

BaUM WELCH AlGORITHM

Initialize T^{0}, E^{0} probability tables
For $i=1$ to convergence

- E-step:
- Run Forward-Backward algorithm and compute messages
- For every t compute $P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ and $P\left(S_{t}=s_{t} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ as in previous slides

Baum Welch Algorithm

Initialize T^{0}, E^{0} probability tables
For $i=1$ to convergence

- E-step:
- Run Forward-Backward algorithm and compute messages
- For every t compute $P\left(S_{t}=s_{t}, S_{t-1}=s_{t-1} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ and $P\left(S_{t}=s_{t} \mid X_{1, \ldots, n}, \theta^{i-1}\right)$ as in previous slides
- M-step:

$$
\begin{aligned}
& \forall u, v T^{(i)}[u, v]=\frac{\sum_{t=2}^{n} P\left(S_{t}=v, S_{t-1}=u \mid X_{1, \ldots, n}, \theta^{i-1}\right)}{\sum_{t=2}^{n} P\left(S_{t-1}=u \mid X_{1, \ldots, n}, \theta^{i-1}\right)} \\
& \forall v, e \quad E^{(i)}[v, e]=\frac{\sum_{t=1}^{n} P\left(S_{t}=v \mid X_{1, \ldots, n}, \theta^{i-1}\right) \cdot \mathbf{1}_{X_{t}=e}}{\sum_{t=1}^{n} P\left(S_{t}=v \mid X_{1, \ldots, n}, \theta^{i-1}\right)}
\end{aligned}
$$

Inference for general BN

BAYESIAN NETWORKS

- Directed acyclic graph (DAG): $G=(V, E)$
- Joint distribution P_{θ} over X_{1}, \ldots, X_{n} that factorizes over G :

$$
P_{\theta}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{N} P_{\theta}\left(X_{i} \mid \operatorname{Parent}\left(X_{i}\right)\right)
$$

- Hence Bayesian Networks are specified by G along with CPD's over the variables (given their parents)

Variable Elimination: Examples

- Marginals are enough:
$P\left(X_{j}=x_{j}, X_{k}=x_{k} \mid X_{i}=x_{i}, X_{h}=x_{h}\right)=\frac{P\left(X_{j}=x_{j}, X_{k}=x_{k}, X_{i}=x_{i}, X_{h}=x_{h}\right)}{P\left(X_{i}=x_{i}, X_{h}=x_{h}\right)}$

VARIABLE ELIMINATION: EXAMPLES

Variable Elimination: Examples

$$
P\left(X_{4}\right)=\sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} P\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, X_{4}\right)
$$

Variable Elimination: Examples

$$
\begin{aligned}
P\left(X_{4}\right) & =\sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} P\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, X_{4}\right) \\
& =\sum_{x_{1}}\left(P\left(X_{1}=x_{1}\right) \sum_{x_{2}}\left(P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) P\left(X_{4} \mid X_{2}=x_{2}\right)\left(\sum_{x_{3}} P\left(X_{3}=x_{3} \mid X_{2}=x_{2}\right)\right)\right)\right)
\end{aligned}
$$

Variable Elimination: Examples

$$
\begin{aligned}
P\left(X_{4}\right) & =\sum_{x_{1}} \sum_{x_{2}} \sum_{x_{3}} P\left(X_{1}=x_{1}, X_{2}=x_{2}, X_{3}=x_{3}, X_{4}\right) \\
& =\sum_{x_{1}}\left(P\left(X_{1}=x_{1}\right) \sum_{x_{2}}\left(P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) P\left(X_{4} \mid X_{2}=x_{2}\right)\left(\sum_{x_{3}} P\left(X_{3}=x_{3} \mid X_{2}=x_{2}\right)\right)\right)\right) \\
& =\sum_{x_{1}}\left(P\left(X_{1}=x_{1}\right)\left(\sum_{x_{2}} P\left(X_{2}=x_{2} \mid X_{1}=x_{1}\right) P\left(X_{4} \mid X_{2}=x_{2}\right)\right)\right)
\end{aligned}
$$

Variable Elimination: Bayesian Network

Initialize List with conditional probability distributions
Pick an order of elimination I for remaining variables
For each $X_{i} \in I$
Find distributions in List containing variable X_{i} and remove them
Define new distribution as the sum (over values of X_{i}) of the product of these distributions

Place the new distribution on List

End

Return List

Variable Elimination: Order Matters

Right order: $\mathrm{O}(\mathrm{n})$
Wrong order: $\mathrm{O}\left(2^{n}\right)$

