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EXAMPLE: CI AND MI

Genetic Info 
of Mother

Genetic Info 
of Father

Marginally independent 
but Conditionally dependent 

given child

Marginally dependent 
but Conditionally independent 

given Parent

Genetic Info 
of Sister

Genetic Info 
of Brother

Genetic Info 
of Parents

Genetic Info 
of Child

Given genetic info of child, 
with genetic info about mother, 

we can infer something about father

Given genetic info about parents, 
genetic info of sibling reveals nothing new 

about myself.
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BAYESIAN NETWORKS

• Bayes net: directed acyclic graph + P(node|parents)

• Directed acyclic graph G = (V,E) 

• Edges going from parent nodes to child nodes 

• Direction indicates parent “generates” child

• Provide conditional probability table/distribution 
P(node|parents)

P (X1, . . . , XN ) =
NY

i=1

P (Xi|Parents(Xi))
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Two main questions
• Learning/estimation: Given observations, can we 

learn the parameters for the graphical model ?

• Inference: Given model parameters, can we 
answer queries about variables in the model

• Eg. what is the most likely value of a latent 
variable given observations

• Eg. What is the distribution of a particular 
variable conditioned on others 

GRAPHICAL MODELS

A graph whose nodes are variables X1, . . . ,XN

Graphs are an intuitive way of representing relationships between
large number of variables

Allows us to abstract out the parametric form that depends on ✓
and the basic relationship between the random variables.



HIDDEN MARKOV MODEL (HMM)

• Speech recognition 

• Natural language processing models 

• Robot localization 

• User attention modeling 

• Medical monitoring

Time! … sequence of observations



MARKOV MODEL

S1 S2 S3

• Each node is identically distributed given its 
predecessor (stationary) 

• The values the nodes take are called states 

• Parameters?  

• P(S1) the initial probability table 

• P(St|St-1) the transition probabilities
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MARKOV MODEL

• If we observe the bot long enough, we get an 
estimate of its behavior (the transition table of 
jumping from state to state) 

• If we observe enough number of times, we can also 
estimate initial distribution over states
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• Inference question: what is probability that we will 
be in state k at time t?

Answer:

P (St = k)?

P (St = k) =
KX

s1=1

. . .
KX

st�1=1

P (S1 = s1, . . . , St�1 = st�1, St = k)

=
KX

s1=1

. . .
KX

st�1=1

t�1Y

i=1

(P (Si = si|Si�1 = si�1)⇥ P (St = k|St�1 = st�1))

For every t we can repeat the above or…

P (St = k) =
KX

st�1=1

P (St = k|St�1 = st�1)P (St�1 = st�1)

recursively compute probability of previous state



MARKOV MODEL

• As time goes by, P(St = k) approaches a fixed 
distribution called stationary distribution 

• Without any further observations, you are unlikely to 
find the bot on a new run (only by luck)
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Same example: 

But you don’t observe location
(dark room)

You hear how close the bot is!

S1 S2 S3

X1 X2 X3

Xt’s are loudness of what you hear
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Same example:  

But you don’t observe location 
(dark room) 

You hear how close the bot is!

What you hear:

Can you catch the Bot?
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S1 S2 S3

X1 X2 X3

What are the parameters?
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• What is probability that bot will be in location k at 
time t given the entire sequence of observations?

P (St = k|X1, . . . , XN )?
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/ P (Xt+1, . . . , XN |St = k,X1, . . . , Xt)P (Xt|St = k,X1, . . . , Xt�1)P (St = k,X1, . . . , Xt�1)
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We know P (Xt|St = k)’s and P (St|St�1)

Compute P (Xt+1, . . . , XN ) and P (St = k,X1, . . . , Xt�1) recursively.

/



INFERENCE IN HMM

S1 S2 S3

X1 X2 X3

messageSt�1 7!St
(k) = P (St = k,X1, . . . , Xt�1)

messageSt+1 7!St
(k) = P (Xn, . . . , Xt+1|St = k)

P (St = k|X1, . . . , Xn) / messageSt�1 7!St
(k)⇥messageSt+1 7!St

(k)⇥ P (Xt|St = k)
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LEARNING PARAMETERS FOR HMM

Now that we have algorithm for inference, what about learning
Given observations, how do we estimate parameters for HMM?
Three guesses . . .


