Machine Learning for Data Science (CS4786) Lecture 17

EM Algorithm, Mixture of Multinomial, Latent Dirichlet Allocation

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/

Probabilistic Models

- Set of models Θ consists of parameters s.t. P_{θ} for each $\theta \in \Theta$ is a distribution over data.
- Learning: Estimate $\theta^{*} \in \Theta$ that best models given data

Maximum Likelihood Principal

Pick $\theta \in \Theta$ that maximizes probability of observation

$$
\theta_{\text {MLE }}=\operatorname{argmax}_{\theta \in \Theta} \underbrace{\log P_{\theta}\left(x_{1}, \ldots, x_{n}\right)}_{\text {Likelihood }}
$$

- A priori all models are equally good, data could have been generated by any one of them

MAXIMUM A POSTERIORI

Pick $\theta \in \Theta$ that is most likely given data

Maximize a posteriori probability of model given data

$$
\theta_{M A P}=\operatorname{argmax}_{\theta \in \Theta} P\left(\theta \mid x_{1}, \ldots, x_{n}\right)
$$

$$
=\operatorname{argmax}_{\theta \in \Theta} \log P\left(x_{1}, \ldots, x_{n} \mid \theta\right)+\log P(\theta)
$$

EM Algorithm

LATENT VARIABLES

- We only observe x_{1}, \ldots, x_{n}, cluster assignments c_{1}, \ldots, c_{n} are not observed
- Finding $\theta \in \Theta$ (even for 1-d GMM) that directly maximizes Likelihood or A Posteriori given x_{1}, \ldots, x_{n} is hard!
- Given latent variables c_{1}, \ldots, c_{n}, the problem of maximizing likelihood (or a posteriori) became easy

Can we use latent variables to device an algorithm?

Expectation Maximization Algorithm

Say c_{1}, \ldots, c_{n} are Latent variables. Eg. cluster assignments

Expectation Maximization Algorithm

Say c_{1}, \ldots, c_{n} are Latent variables. Eg. cluster assignments

- Initialize $\theta^{(0)}$ arbitrarily, repeat unit convergence:
(E step) For every t, define distribution Q_{t} over the latent variable \mathcal{c}_{t} as:

$$
Q_{t}^{(i)}\left(c_{t}\right)=P\left(c_{t} \mid x_{t}, \theta^{(i-1)}\right)
$$

(M step)

$$
\theta^{(i)}=\operatorname{argmax}_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{c_{t}} Q_{t}^{(i)}\left(c_{t}\right) \log P\left(x_{t}, c_{t} \mid \theta\right)
$$

Expectation Maximization Algorithm

Say c_{1}, \ldots, c_{n} are Latent variables. Eg. cluster assignments

- Initialize $\theta^{(0)}$ arbitrarily, repeat unit convergence:
(E step) For every t, define distribution Q_{t} over the latent variable \mathcal{c}_{t} as:

$$
\begin{aligned}
Q_{t}^{(i)}\left(c_{t}\right) & =P\left(c_{t} \mid x_{t}, \theta^{(i-1)}\right) \\
& \propto P\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) P\left(c_{t} \mid \theta^{(i-1)}\right)
\end{aligned}
$$

(M step)

$$
\theta^{(i)}=\operatorname{argmax}_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{c_{t}} Q_{t}^{(i)}\left(c_{t}\right) \log P\left(x_{t}, c_{t} \mid \theta\right)
$$

Expectation Maximization Algorithm

Say c_{1}, \ldots, c_{n} are Latent variables. Eg. cluster assignments

- Initialize $\theta^{(0)}$ arbitrarily, repeat unit convergence:
(E step) For every t, define distribution Q_{t} over the latent variable \mathcal{c}_{t} as:

$$
\begin{aligned}
Q_{t}^{(i)}\left(c_{t}\right) & =P\left(c_{t} \mid x_{t}, \theta^{(i-1)}\right) \\
& \propto P\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) P\left(c_{t} \mid \theta^{(i-1)}\right)
\end{aligned}
$$

(M step)

$$
\begin{array}{cc}
\theta^{(i)}=\operatorname{argmax}_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{c_{t}} Q_{t}^{(i)}\left(c_{t}\right) \log P\left(x_{t}, c_{t} \mid \theta\right) & \text { if MLE } \\
\theta^{(i)}=\operatorname{argmax}_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q_{t}^{(i)}\left(c_{t}\right) \log P\left(x_{t}, c_{t} \mid \theta\right)+\log P(\theta) & \text { if MAP }
\end{array}
$$

Why EM works?

- Every iteration of EM only improves log-likelihood (log a posteriori)

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right)$:

$$
\log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right)
$$

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right):$

$$
\log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right)=\sum_{t=1}^{n} \log P_{\theta^{(i)}}\left(x_{t}\right)
$$

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right)$:

$$
\begin{aligned}
\log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{t=1}^{n} \log P_{\theta^{(i)}}\left(x_{t}\right) \\
& =\sum_{t=1}^{n} \log \left(\sum_{c_{t}=1}^{K} P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)\right)
\end{aligned}
$$

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right)$:

$$
\begin{aligned}
\log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{t=1}^{n} \log P_{\theta^{(i)}}\left(x_{t}\right) \\
& =\sum_{t=1}^{n} \log \left(\sum_{c_{t}=1}^{K} P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)\right) \\
& =\sum_{t=1}^{n} \log \left(\sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right)\left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right)\right)
\end{aligned}
$$

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right)$:

$$
\begin{aligned}
\log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{t=1}^{n} \log P_{\theta^{(i)}}\left(x_{t}\right) \\
& =\sum_{t=1}^{n} \log \left(\sum_{c_{t}=1}^{K} P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)\right) \\
& =\sum_{t=1}^{n} \log \left(\sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right)\left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right)\right) \\
& \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right)
\end{aligned}
$$

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right)$:

$$
\begin{aligned}
\log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right) & =\sum_{t=1}^{n} \log P_{\theta^{(i)}}\left(x_{t}\right) \\
& =\sum_{t=1}^{n} \log \left(\sum_{c_{t}=1}^{K} P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)\right) \\
& =\sum_{t=1}^{n} \log \left(\sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right)\left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right)\right) \\
& \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right)
\end{aligned}
$$

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right)$:

$$
\log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right) \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right)
$$

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right):$

$$
\begin{aligned}
& \log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right) \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right) \\
& \quad \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i-1)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right) \quad \text { M-step }
\end{aligned}
$$

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right):$

$$
\begin{gathered}
\log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right) \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right) \\
\quad \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i-1)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right) \\
\quad=\sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i-1)}}\left(x_{t}, c_{t}\right)}{P_{\theta^{(i-1)}}\left(c_{t} \mid x_{t}\right)}\right)
\end{gathered}
$$

M-step

E-step

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right):$

$$
\begin{aligned}
& \log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right) \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right) \\
& \quad \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i-1)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right) \quad \text { M-step } \\
& \quad=\sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i-1)}}\left(x_{t}, c_{t}\right)}{P_{\theta^{(i-1)}}\left(c_{t} \mid x_{t}\right)}\right) \\
& \quad=\sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log P_{\theta^{(i)}}\left(x_{t}\right)
\end{aligned}
$$

M-step

WHY SHOULD EM WORK?

Steps to show that $\log \operatorname{Lik}\left(\theta^{(i)}\right) \geq \log \operatorname{Lik}\left(\theta^{(i-1)}\right)$:

$$
\begin{aligned}
& \log P_{\theta^{(i)}}\left(x_{1}, \ldots, x_{n}\right) \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right) \\
& \quad \geq \sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i-1)}}\left(x_{t}, c_{t}\right)}{Q^{(i)}\left(c_{t}\right)}\right) \quad \text { M-step } \\
& \quad=\sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log \left(\frac{P_{\theta^{(i-1)}}\left(x_{t}, c_{t}\right)}{P_{\theta^{(i-1)}}\left(c_{t} \mid x_{t}\right)}\right) \quad \text { E-step } \\
& \quad=\sum_{t=1}^{n} \sum_{c_{t}=1}^{K} Q^{(i)}\left(c_{t}\right) \log P_{\theta^{(i)}}\left(x_{t}\right) \\
& \quad=\sum_{t=1}^{n} \log P_{\theta^{(i)}}\left(x_{t}\right)
\end{aligned}
$$

Mixture of Multinomials

Mixture of Multinomials

曾

Mixture of Multinomials

Mixture of Multinomials

Mixture of Multinomials

曾

Mixture of Multinomials

$\pi=\underbrace{}_{\text {party! HOME work }}$

曾

Mixture of Multinomials

0	0	0	0	1	1	0	0	0

20	15	10	5	0	0	0	0	0

10	5	5	2	1	1	1	1	5

Mixture of Multinomials

Mixture of Multinomials

Mixture of Multinomials

- Eg. Model purchases of each customer
- K-types of customers, each designated with distribution over the d items to buy
- Generative model:
- π is mixture distribution over the K-types of buyers
- p_{1}, \ldots, p_{K} are the K distributions over the d items, one for each customer type
- Generative process, each round draw customer type $c_{t} \sim \pi$
- Next given c_{t} draw list of purchases as $x_{t} \sim \operatorname{multinomial}\left(p_{c_{t}}\right)$

Multinomial Distribution

$$
P(x \mid p)=\frac{m!}{x[1]!\cdot \ldots \cdot x[d]!} p[1]^{x_{t}[1]} \cdot \ldots \cdot p[d]^{x_{t}[d]}
$$

Probability of purchase vector x while drawing products independently m times from p

E-step

$$
Q_{t}^{(i)}\left(c_{t}\right) \propto P\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) P\left(c_{t} \mid \theta^{(i-1)}\right)
$$

E-step

$$
\begin{aligned}
Q_{t}^{(i)}\left(c_{t}\right) & \propto P\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) P\left(c_{t} \mid \theta^{(i-1)}\right) \\
& =\frac{P\left(x_{t} \mid p_{c_{t}}^{(i-1)}\right) \pi^{(i-1)}\left(c_{t}\right)}{\sum_{k=1}^{K} P\left(x_{t} \mid p_{k}^{(i-1)}\right) \pi^{(i-1)}(k)}
\end{aligned}
$$

E-step

$$
\begin{aligned}
Q_{t}^{(i)}\left(c_{t}\right) & \propto P\left(x_{t} \mid c_{t}, \theta^{(i-1)}\right) P\left(c_{t} \mid \theta^{(i-1)}\right) \\
& =\frac{P\left(x_{t} \mid p_{c_{t}}^{(i-1)}\right) \pi^{(i-1)}\left(c_{t}\right)}{\sum_{k=1}^{K} P\left(x_{t} \mid p_{k}^{(i-1)}\right) \pi^{(i-1)}(k)} \\
& =\frac{p_{c_{t}}[1]^{x_{t}[1]} \cdot \ldots \cdot p_{c_{t}}[d]^{x_{t}[d]} \cdot \pi_{c_{t}}^{(i-1)}}{\left.\sum_{k=1}^{K} p_{k}[1]^{x_{t}[1]} \ldots \ldots \cdot p_{c_{t}}[d]\right]_{t}^{x_{t}[d]} \cdot \pi_{k}^{(i-1)}}
\end{aligned}
$$

M-step

$$
\theta^{(i)}=\operatorname{argmax}_{\theta} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right) P\left(c_{t}=k \mid \theta\right)\right)
$$

M-step

$$
\begin{aligned}
\theta^{(i)}= & \operatorname{argmax}_{\theta} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right) P\left(c_{t}=k \mid \theta\right)\right) \\
= & \operatorname{argmax}_{\pi, p_{1}, \ldots, p_{K}}\left\{\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(\frac{m!}{x_{t}[1]!\cdot \ldots \cdot x_{t}[d]!} p_{k}[1]^{x_{t}[1]} \ldots \cdot p_{k}[d]^{x_{t}[d]}\right)\right. \\
& \left.+\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \pi_{k}\right\}
\end{aligned}
$$

M-step

$$
\begin{aligned}
\theta^{(i)}= & \operatorname{argmax}_{\theta} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right) P\left(c_{t}=k \mid \theta\right)\right) \\
= & \operatorname{argmax}_{\pi, p_{1}, \ldots, p_{K}}\left\{\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(\frac{m!}{x_{t}[1]!\cdot \ldots \cdot x_{t}[d]!} p_{k}[1]^{x_{t}[1]} \ldots \cdot p_{k}[d]^{x_{t}[d]}\right)\right. \\
& \left.\quad+\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \pi_{k}\right\} \\
= & \operatorname{argmax}_{\pi, p_{1}, \ldots, p_{K}}\left\{\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(p_{k}[1]^{x_{t}[1]} \ldots p_{k}[d]^{x_{t}[d]}\right)\right. \\
& \left.\quad+\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \pi_{k}\right\}
\end{aligned}
$$

M-step

$$
\begin{aligned}
\theta^{(i)}= & \operatorname{argmax}_{\theta} \sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(P\left(x_{t} \mid c_{t}=k, \theta\right) P\left(c_{t}=k \mid \theta\right)\right) \\
= & \operatorname{argmax}_{\pi, p_{1}, \ldots, p_{K}}\left\{\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(\frac{m!}{x_{t}[1]!\cdot \ldots \cdot x_{t}[d]!} p_{k}[1]^{x_{t}[1]} \ldots \cdot p_{k}[d]^{x_{t}[d]}\right)\right. \\
& \left.+\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \pi_{k}\right\} \\
= & \operatorname{argmax}_{\pi, p_{1}, \ldots, p_{K}}\left\{\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \left(p_{k}[1]^{x_{t}[1]} \cdot \ldots \cdot p_{k}[d]^{x_{t}[d]}\right)\right. \\
& \left.\quad+\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \pi_{k}\right\} \\
= & \operatorname{argmax}_{\pi, p_{1}, \ldots, p_{K}}\left\{\sum_{t=1}^{n} \sum_{k=1}^{K} \sum_{j=1}^{d} Q_{t}^{(i)}(k) x_{t}[j] \log \left(p_{k}[j]\right)+\sum_{t=1}^{n} \sum_{k=1}^{K} Q_{t}^{(i)}(k) \log \pi_{k}\right\}
\end{aligned}
$$

M-step

$$
\pi_{k}^{(i)}=\frac{\sum_{t=1}^{n} Q_{t}^{(i)}(k)}{n}
$$

$$
p_{k}[j]=\frac{\sum_{t=1}^{n} x_{t}[j] Q_{t}^{(i)}(k)}{m \sum_{t=1}^{n} Q_{t}^{(i)}(k)}
$$

M-step

$$
\pi_{k}^{(i)}=\frac{\sum_{i=1}^{n} Q_{i}^{(i)}(k)}{n}
$$

proportion of weights for each type

$$
p_{k}[j]=\frac{\sum_{t=1}^{n} x_{t}[j] Q_{t}^{(i)}(k)}{m \sum_{t=1}^{n} Q_{t}^{(i)}(k)}
$$

weighted number of jth product

Mixture of Multinomials

What is missing in this story?

Mixture of Multinomials

What is missing in this story?

曾

Mixture of Multinomials

What is missing in this story?

若

10	5	5	2	1	1	1	1	5

Mixture of Multinomials

What is missing in this story?

曾	圈							
	$10 \mid 5$	2		10			0	
1	$0{ }^{0} 0$	1		0			1	
0	0	0					0	
20	15	5		0			0	

10	5	5	2	1	1	1	1	5

Everyone is a bit of party and a bit of work!

Latent Dirichlet Allocation

- Generative story:

For $t=1$ to n
For each customer draw mixture of types π_{t}
For $i=1$ to m
For each item to purchase, first draw type $c_{t}[i] \sim \pi_{t}$
Next, given the type draw $x_{t}[i] \sim p_{c_{t}[i]}$
End For
End For

DIRICHLET DISTRIBUTION

- Its a distribution over distributions!
- Parameters $\alpha_{1}, \ldots, \alpha_{K}$ s.t. $\alpha_{k}>0$
- The density function is given as

$$
p(\pi ; \alpha)=\frac{1}{B(\alpha)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}}
$$

where $B(\alpha)=\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right) / \Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)$

DIRICHLET DISTRIBUTION

Dirichlet(.5,.5,.5)

Dirichlet(1,1,1)

Dirichlet($5,10,8$)

Latent Dirichlet Allocation

- Generative story:

For $t=1$ to n
For each customer draw mixture of types $\pi_{t} \sim \operatorname{Dirchlet}(\alpha)$ For $i=1$ to m

For each item to purchase, first draw type $c_{t}[i] \sim \pi_{t}$
Next, given the type draw $x_{t}[i] \sim p_{c_{t}[i]}$
End For
End For

- Parameters, α for the Dirichlet distribution and p_{1}, \ldots, p_{K}

Latent Dirichlet Allocation

- Generative story:

For $t=1$ to n
For each customer draw mixture of types $\pi_{t} \sim \operatorname{Dirchlet}(\alpha)$ For $i=1$ to m

For each item to purchase, first draw type $c_{t}[i] \sim \pi_{t}$
Next, given the type draw $x_{t}[i] \sim p_{c_{t}[i]}$
End For
End For

- Parameters, α for the Dirichlet distribution and p_{1}, \ldots, p_{K}

DIRICHLET DISTRIBUTION

- Its a distribution over distributions!
- Parameters $\alpha_{1}, \ldots, \alpha_{K}$ s.t. $\alpha_{k}>0$
- The density function is given as

$$
p(\pi ; \alpha)=\frac{1}{B(\alpha)} \prod_{k=1}^{K} \pi_{k}^{\alpha_{k}}
$$

where $B(\alpha)=\prod_{k=1}^{K} \Gamma\left(\alpha_{k}\right) / \Gamma\left(\sum_{k=1}^{K} \alpha_{k}\right)$

DIRICHLET DISTRIBUTION

Dirichlet(.5,.5,.5)

Dirichlet(1,1,1)

Dirichlet($5,10,8$)

What is the Dirichlet distribution doing?

- Say we didn't have the $\operatorname{Dir}(\alpha)$, and we had one π for all customers. Two choices:
(1) For each customer t draw customer type c_{t} from π and then draw all products i from 1 to m, based on $p_{c_{t}}$. What is this model?
(2) For each customer t and each product i the customer buys, draw $c_{t}[i] \sim \pi$ and then draw $x_{t}[i] \sim p_{\mathcal{c}_{t}[i]}$.

What is the Dirichlet distribution doing?

- Next, say we didn't have $\operatorname{Dir}(\alpha)$ but each customer separate π_{t} ?

WHAT IS THE DIRICHLET DISTRIBUTION DOING?

- Next, say we didn't have $\operatorname{Dir}(\alpha)$ but each customer separate π_{t} ?
- This model is often called probabilistic latent semantic analysis

WHAT IS THE DIRICHLET DISTRIBUTION DOING?

- Next, say we didn't have $\operatorname{Dir}(\alpha)$ but each customer separate π_{t} ?
- This model is often called probabilistic latent semantic analysis
- Number of parameters is n, grows with number of customers

WHAT IS THE DIRICHLET DISTRIBUTION DOING?

- Next, say we didn't have $\operatorname{Dir}(\alpha)$ but each customer separate π_{t} ?
- This model is often called probabilistic latent semantic analysis
- Number of parameters is n, grows with number of customers
- Since each customer gets her/his own mixture distribution without restriction, model can overfit easily.

WHAT IS THE DIRICHLET DISTRIBUTION DOING?

- Next, say we didn't have $\operatorname{Dir}(\alpha)$ but each customer separate π_{t} ?
- This model is often called probabilistic latent semantic analysis
- Number of parameters is n, grows with number of customers
- Since each customer gets her/his own mixture distribution without restriction, model can overfit easily.
- Further, since there are as many π 's as customers, when a new customer walks in there is no way of extending π_{n+1} is any meaningful way to use our model.

What is the Dirichlet distribution doing?

- Next, say we didn't have $\operatorname{Dir}(\alpha)$ but each customer separate π_{t} ?
- This model is often called probabilistic latent semantic analysis
- Number of parameters is n, grows with number of customers
- Since each customer gets her/his own mixture distribution without restriction, model can overfit easily.
- Further, since there are as many π^{\prime} s as customers, when a new customer walks in there is no way of extending π_{n+1} is any meaningful way to use our model.

Dirichlet prior helps us get a model for new, unseen customers. If we haven't seen a customer type yet, thats ok.

A Refined Generative Story

Generative Story:
For each customer type k from 1 to K,
Draw $p_{k} \sim \operatorname{Dir}(\beta)\left(\right.$ smooth $p_{k}{ }^{\prime}$ s)
End
For each customer t from 1 to n
Draw $\pi_{t} \sim \operatorname{Dir}(\alpha)$
For each purchase i from 1 to m for this customer,
Draw the customer type $c_{t}[i] \sim \pi_{t}$ for the purchase
Given customer type, draw the item $x_{t}[i] \sim p_{c_{t}[i]}$ purchased
End
End
Parameters: α a K-dimensional vector and β a d-dimensional vector.

Say z_{1}, \ldots, z_{n} are Latent variables. Eg. cluster assignments

- Initialize $\theta^{(0)}$ arbitrarily, repeat unit convergence:
(E step) For every t, define distribution Q_{t} over the latent variable c_{t} as:

$$
Q_{t}^{(i)}\left(z_{t}\right)=P\left(z_{t} \mid x_{t}, \theta^{(i-1)}\right)
$$

(M step)

$$
\theta^{(i)}=\operatorname{argmax}_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{z_{t}} Q_{t}^{(i)}\left(z_{t}\right) \log P\left(x_{t}, z_{t} \mid \theta\right)
$$

Expectation Maximization Algorithm

Say z_{1}, \ldots, z_{n} are Latent variables. Eg. cluster assignments

- Initialize $\theta^{(0)}$ arbitrarily, repeat unit convergence:
(E step) For every t, define distribution Q_{t} over the latent variable c_{t} as:

$$
Q_{t}^{(i)}\left(z_{t}\right)=P\left(z_{t} \mid x_{t}, \theta^{(i-1)}\right)
$$

(M step)

$$
\theta^{(i)}=\operatorname{argmax}_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{z_{t}} Q_{t}^{(i)}\left(z_{t}\right) \log P\left(x_{t}, z_{t} \mid \theta\right)
$$

if MLE

Latent variables $c_{t}[i]$'s, p_{k} 's and π_{t} 's.

EM Algorithm for LDA

EM Algorithm for LDA

- There are infinite possibilities for $\pi_{t}^{\prime} s$ and $p_{k}^{\prime} s$

EM Algorithm for LDA

- There are infinite possibilities for $\pi_{t}^{\prime} s$ and $p_{k}^{\prime} s$
- Only think of $c_{t}[i]^{\prime} s$ as latent variables

EM Algorithm for LDA

- There are infinite possibilities for $\pi_{t}^{\prime} s$ and $p_{k}^{\prime} s$
- Only think of $c_{t}[i]^{\prime} s$ as latent variables
- E-step becomes intractable!

EM Algorithm for LDA

- There are infinite possibilities for $\pi_{t}^{\prime} s$ and $p_{k}^{\prime} s$
- Only think of $c_{t}[i]^{\prime} s$ as latent variables
- E-step becomes intractable!
- Use approximate E-step (Variational approximation)

EM Algorithm for LDA

- There are infinite possibilities for $\pi_{t}^{\prime} s$ and $p_{k}^{\prime} s$
- Only think of $c_{t}[i]^{\prime} s$ as latent variables
- E-step becomes intractable!
- Use approximate E-step (Variational approximation)
- M-step involves convex optimization

What was common between the various mixture models?

