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PROBABILISTIC MODEL

Data: x1. . . . ,xn

✓ 2 ⇥
P✓ explains data
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EXAMPLES

Gaussian Mixture Model
Each ✓ consists of mixture distribution ⇡ = (⇡1, . . . ,⇡K

), means
µ1, . . . ,µK

∈ Rd and covariance matrices ⌃1, . . . ,⌃K

At time t we generate a new tree as follows:
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PROBABILISTIC MODELS

Set of models ⇥ consists of parameters s.t. P✓ for each ✓ ∈ ⇥ is a
distribution over data.

Learning: Estimate ✓∗ ∈ ⇥ that best models given data



MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

Reasoning:
One of the models in ⇥ is the correct one
Given data we pick the one that best explains the observed data
Equivalently pick the maximum likelihood estimator,

✓
MLE

= argmax✓∈⇥ log P✓(x1, . . . ,xn

)

Often referred to as frequentist view
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MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

✓
MLE

= argmax✓∈⇥ log P✓(x1, . . . ,xn

)�����������������������������������������������������������������������������������������������������
Likelihood

A priori all models are equally good, data could have been
generated by any one of them



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn

)
I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)
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MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Maximize a posteriori probability of model given data

✓
MAP

= argmax✓∈⇥P(✓�x1, . . . ,xn

)
= argmax✓∈⇥ P(x1, . . . ,xn

�✓)P(✓)
∑✓∈⇥ P(x1, . . . ,xn

�✓)P(✓)
= argmax✓∈⇥ P(x1, . . . ,xn

�✓)P(✓)
P(x1, . . . ,xn
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= argmax✓∈⇥ P(x1, . . . ,xn
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likelihood

P(✓)�
prior

= argmax✓∈⇥ log P(x1, . . . ,xn

�✓) + log P(✓)



THE BAYESIAN CHOICE

Don’t pick any ✓∗ ∈ ⇥
Model is simply an abstraction

We have a prosteriori distribution over models, why pick one if in
the end of the day we only want cluster assignments

For each point find probability of cluster assignment we get by
integrating over a posteriori probability of parameters ✓

We will come back to this later . . .

P (X|data) =
X

✓2⇥

P (X, ✓|data) =
X

✓2⇥

P (X|✓)P (✓|data)

✓?



Latent Variables and  
Expectation Maximization (EM) 



EXAMPLE: GAUSSIAN MIXTURE MODEL

MLE: ✓ = (µ1, . . . ,µK
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MLE FOR GMM

Let us consider the one dimensional case,
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Now consider the partial derivative w.r.t. µ1, we have:
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Even given all other parameters, optimizing w.r.t. just µ1 is hard!



MLE FOR GMM

Say by some magic you knew cluster assignments, then
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LATENT VARIABLES

We only observe x1, . . . ,xn

, cluster assignments c1, . . . , cn

are not
observed

Finding ✓ ∈ ⇥ (even for 1-d GMM) that directly maximizes
Likelihood or A Posteriori given x1, . . . ,xn

is hard!

Given latent variables c1, . . . , cn

, the problem of maximizing
likelihood (or a posteriori) became easy

Can we use latent variables to device an algorithm?



EXPECTATION MAXIMIZATION ALGORITHM

For demonstration we shall consider the problem of finding MLE
(MAP version is very similar)

Initialize ✓(0) arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Q
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over the latent variable c
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EXAMPLE: EM FOR GMM

E step: For every k ∈ [K],
Q
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EXAMPLE: EM FOR GMM

For every k ∈ [K], the maximization step yields,
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WHY SHOULD EM WORK?

A very high level view:
Performing E-step will never decrease log-likelihood (or log a
posteriori)

Performing M-step will never decrease log-likelihood (or log a
posteriori)
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WHY SHOULD EM WORK?

Likelihood never decreases

So whenever we converge we converge to a local optima

However problem is non-convex and can have many local optimal

In general no guarantee on rate of convergence

In practice, do multiple random initializations and pick the best
one!



EM IN GENERAL

There was nothing special about GMM or clustering problems

EM can be used as a general strategy for any problem with
latent/missing/unobserved variables

The MAP version only involves an extra prior term over ✓
multiplied to the likelihood

In general probabilistic models with observed and latent variables
can be represented succinctly as graphical models.
Next time . . .


