Machine Learning for Data Science (CS4786)

Lecture 16

Probabilistic Modeling and EM Algorithm

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/



PROBABILISTIC MODEL

0 cO

Py explains data

Data: x1....,X,



PROBABILISTIC MODEL

M3 — 0.25



EXAMPLES

@ Gaussian Mixture Model

e Each 0 consists of mixture distribution 7t = (71, . . ., 71 ), means
Wi, ..., UK € R? and covariance matrices 21, ..., 2K
o At time f we generate a new tree as follows:

Ct ~ 7T, xl‘NN(HCt'ZCt)



PROBABILISTIC MODELS

@ Set of models O consists of parameters s.t. Pg for each 0 e © is a
distribution over data.

@ Learning: Estimate 0" € © that best models given data
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MAXIMUM LIKELIHOOD PRINCIPAL

Pick 0 € © that maximizes probability of observation

Reasoning:
@ One of the models in O is the correct one
@ Given data we pick the one that best explains the observed data

@ Equivalently pick the maximum likelihood estimator,

OpmLE = argmaxy g log Pe(x1, .. ., Xp)

Often referred to as frequentist view



MAXIMUM LIKELIHOOD PRINCIPAL

Pick 0 € © that maximizes probability of observation

OMLE = argmaxg o logPe(x1, ..., X1)
Likelihood

@ A priori all models are equally good, data could have been
generated by any one of them
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MAXIMUM A POSTERIORI

Say you had a prior belief about models provided by P(0)
Pick 0 € © that is most likely given data

Reasoning:
@ Models are abstractions that capture our belief
@ We update our belief based on observed data
@ Given data we pick the model that we believe the most

@ Pick 0 that maximizes log P(0|x, ..., X1,)

[ want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians



MAXIMUM A POSTERIORI

Pick 0 € O that is most likely given data

Maximize a posteriori probability of model given data

Omap = argmaxy oP(0x1, .. ., X1)



THE BAYESIAN CHOICE

Don’t pick any 0" € ©

@ Model is simply an abstraction

@ We have a prosteriori distribution over models, why pick one 97

P(X|data) = » P(X,6|data) = ) P(X|0)P(f|data)
0cO 0cO



| atent Variables and
Expectation Maximization (EM)



EXAMPLE: GAUSSIAN MIXTURE MODEL

n K 1 - P
Po(xq, ..., xn)zn(lzln\/(z 31415)2‘2‘@(}3(_(3@—”1') 2i(xs uz)))

Find 0 that maximizes log Pg (x1, . . ., X1)



MLE FOR GMM

Let us consider the one dimensional case,

K 1
\/2 +3.141502

)



MLE FOR GMM

Say by some magic you knew cluster assignments, then

n um X — Ug, 2
log Po ((xt,ct)1,... n):ZIOg(\/2*31415 — ex p(—( tzgkzt ) ))

zn: (log(ﬁct) —log(2 * 3.1415 = o‘c ) — (% — H‘ft)z)



LATENT VARIABLES

@ We only observe xq, ..., x;, cluster assignments cq, . . ., ¢, are not
observed

@ Finding 0 € © (even for 1-d GMM) that directly maximizes
Likelihood or A Posteriori given x1, . . ., X, 1s hard!

@ Given latent variables cq, ..., ¢;,, the problem of maximizing
likelihood (or a posteriori) became easy

Can we use latent variables to device an algorithm?
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EXPECTATION MAXIMIZATION ALGORITHM

@ For demonstration we shall consider the problem of finding MLE
(MAP version is very similar)

o Initialize 8(°) arbitrarily, repeat unit convergence:

(E step) For every t, define distribution Q; over the latent variable c; as:

Q" (¢r) = P(cilxy, 047D

(M step)

01) = argmax,_ o > Y. QYW (¢;)log P(xt, c10)

=1 c¢



EXAMPLE: EM FOR GMM

@ E step: For every k € [K],

Qt(i)(Ct =k) =P (c; =k|x;,0) = P (xife; =k, 007 1) x P(c; = k|90D)
o< (I)(x I“Lk i-1) Z(l 1)) (Z 1)

7

gaussmn p.d.f.



EXAMPLE: EM FOR GMM

@ E step: For every k € [K],

Qt(i)(Ct =k) =P (c; =k|x;,0) = P (xife; =k, 007 1) x P(c; = k|90D)
o< (I)(x I“Lk i-1) Z(l 1)) (Z 1)

7

gaussmn p.d.f.

@ M step: Given (), . . ., Q,, we need to find

. n K .
01) = argmax > QYW (k)log P(x;, ¢; = k|B)

De® =1 k=1

= argmax zn: i Qt(i) (k) (log P(x¢|c; =k,0) +log P(c; = k|0))

S =1 k=1
n

= argmax » Z Qtl) (k) (log & (x¢; W, i) + log ¢ )

T, K 21,k =1 ¢=1

=



EXAMPLE: EM FOR GMM

For every k € [K], the maximization step yields,

(l) Zt 1 Qtl) (k)xt Z(Z) _ Z?:l Qz,gl) (k) (xt - H}EZ)) (xt - H}EZ))
& Zt 1 Q:(k) | ¢ Z?:l Qt (k)

| n (1) I
Ttlgz) _ thl Qt ( )

n
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@ Performing M-step will never decrease log-likelihood (or log a
posteriori)
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WHY SHOULD EM WORK?

Steps to show that log Lik(0()) > log Lik(8(~1)) :

logPqai (x1, ..., Xy) > Z Z QW (¢y) log(

t=1 c;=1

Pgaiy (xt, Ct))
QW (cy)



WHY SHOULD EM WORK?

@ Likelihood never decreases

@ So whenever we converge we converge to a local optima

@ However problem is non-convex and can have many local optimal
@ In general no guarantee on rate of convergence

@ In practice, do multiple random initializations and pick the best
one!



EM IN GENERAL

@ There was nothing special about GMM or clustering problems

@ EM can be used as a general strategy for any problem with
latent/missing /unobserved variables

@ The MAP version only involves an extra prior term over 0
multiplied to the likelihood

@ In general probabilistic models with observed and latent variables
can be represented succinctly as graphical models.
Next time ...



