
Machine Learning for Data Science (CS4786)
Lecture 15

Review + Probabilistic Modeling

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/



Announcements

• In-class Kaggle link is up


• only one registration per group


• 5 submissions per day allowed


• Start early so you get more submissions


• Survey:  Participation 95.44% !  Kudos!
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TELL ME WHO YOUR FRIENDS ARE . . .

Cluster nodes in a graph.
Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A
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i,j = A

j,i > 0 indicates similarity between elements x
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and x
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Example: A

i,j = exp(−�d(x
i
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A is adjacency matrix of a graph
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Spectral Embedding

• Nodes linked to each other are close in embedded 
space



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn
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1 Given matrix A calculate diagonal matrix D s.t. D
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j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn

y1, . . . ,yn are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors



NORMALIZED CUT

Why cut is perhaps not a good measure?

Normalized cut: Minimize sum of ratio of number of edges cut
per cluster and number of edges within cluster

NCUT =�
j

CUT(C
j

)
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j

)
Example K = 2

CUT(C1,C2)� 1
Edges(C1) +

1
Edges(C2)�

Minimize CUT(C1,C2) s.t. Edges(C1) = Edges(C2)
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NORMALIZED CUT

Normalized cut: Minimize sum of ratio of number of edges cut
per cluster and number of edges within cluster

NCUT =�
j

CUT(C
j

)
Edges(C

j

)
Example K = 2

CUT(C1,C2)� 1
Edges(C1) +

1
Edges(C2)�

This is an NP hard problem!

. . . so relax



NORMALIZED SPECTRAL CLUSTERING

As before, we want to minimize ∑(i,j)∈E(ci − cj)2 = c�Lc

But we also want to weight the values of ci’s based on degree.
We want high degree nodes to have larger c magnitude

That is we want to simultaneously maximize ∑n
i=1 c2

i D2
i,i = c�Dc

Find c so as to:

minimize
c�Lc
c�Dc≡minimize c�Lc subject to c�Dc = 1

≡minimize u�D−1�2LD−1�2u subject to �u� = 1
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SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph

Minimize c>L̃c s.t. c ? 1

Approximately Minimize normalized cut!

NORMALIZED CUT

First note that Edges(C
i

) = ∑
k∶x

k

∈C
i

D

k,k

Set c

i

=
�����������

�
Edges(C2)
Edges(C1) if i ∈ C1

−�Edges(C1)
Edges(C2) otherwise

Verify that c

�
Lc = �E� ×NCut and c

�
Dc = �E� (and Dc ⊥ 1)

Hence we relax Minimize NCUT(C) to

Minimize
c

�
Lc

c

�
Dc

s.t. Dc ⊥ 1

Solution: Find second smallest eigenvectors of L̃ = I −D

−1�2
AD

−1�2



SPECTRAL CLUSTERING ALGORITHM (NORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the normalized Laplacian matrix L̃ = I −D

−1�2
AD

−1�2
3 Find eigen vectors v1, . . . ,vn

of L̃ (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



Review
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K-means

• K-means algorithm: (wishful thinking)  

• Fix parameters (the k means) and compute new 
cluster assignments (or probabilities) for every 
point 

• Fix cluster assignment for all data points and re-
evaluate parameters (the k-means)



Single-Link Clustering

• Start with all points being their own clusters 

• Until we get K-clusters, merge the closest two 
clusters



When to Use Single Link

• When we have dense sampling of points within 
each cluster 

• When not to use: when we might have outliers 



When to use K-means

• When we have nice spherical round equal size 
clusters or cluster masses are far apart 

• Handles outliers better



PRINCIPAL COMPONENT ANALYSIS

Eigenvectors of the covariance matrix are the principal
components

Top K principal components are the eigenvectors with K largest
eigenvalues

Projection = Data × Top Keigenvectors

Reconstruction = Projection × Transpose of top K eigenvectors

Independently discovered by Pearson in 1901 and Hotelling in
1933.

⌃ =cov X
 !

1.

eigs= ⌃ ,K( )W2.

3. Y = W⇥X�µ



When to use PCA
• Great when data is truly low dimensional (on a 

hyperplane (linear)) 

• Or approximately low dimensional (almost lie on 
plane Eg. very flat ellipsoid) 

• Eg. Dimensionality reduction for face images, for 
multiple biometric applications as 
preprocessing…



CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points

⌃ = � ⌃1,1 ⌃1,2
⌃2,1 ⌃2,2

�

Calculate ⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1. The top K eigen vectors of this matrix

give us projection matrix for view I.

Calculate ⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2. The top K eigen vectors of this matrix

give us projection matrix for view II.

,

n

d1 d2

X = X1 X2

 !

1.

⌃ =cov X
 !

2.
⌃

⌃⌃
⌃11

21

12

22
=

eigs= ,K( )3. W1
⌃�1

11 ⌃12⌃
�1
22 ⌃21

4. Y = W⇥X�µ
11

1 1



When to use CCA?

• CCA applies for problems where data can be split 
into 2 views X = [X1,X2] 

• CCA picks directions of projection (in each view) 
where data is maximally correlated 

• Maximizes correlation coefficient and not just 
covariance so is scale free 



When to use CCA
• Scenario 1: You have two feature extraction techniques.  

• One provides excellent features for dogs Vs cats and 
noise on other classes 

• Other method provides excellent features for cars Vs 
bikes and noise for other classes 

• What do we do? 

A. Use CCA to find one common representation 

B. Concatenate the two features extracted



When to use CCA
• Scenario 2: You have two cameras capturing images of the 

same objects from different angles.  

• You have  a feature extraction technique that provides feature 
vectors from each camera.  

• You want to extract good features for recognizing the object 
from the two cameras 

• What do we do? 

A. Use CCA to find one common representation 

B. Concatenate features provides excellent features for
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When to use RP?
• When data is huge and very large dimensional  

• For PCA, CCA typically you think of K (no. of 
dimensions we reduce to) in double digits 

• For RP think of K typically in 3-4 digit numbers 

• RP guarantees preservation of inter-point distances. 

• RP unlike PCA and CCA does not project using 
unit vectors. (What does this mean?)



KERNEL PCA

,

 !

1. =

n

nK̃ Xkcompute

eigs= ( ,K)2.

" #
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�1

AKp
�K

. . .



KERNEL PCA

4. Y = ⇥K̃ P



When to use Kernel PCA

• When data lies on some non-linear, low dimensional 
subspace 

• Kernel function matters.  (Eg. RBF kernel, only 
points close to a given point have non-negligible 
kernel evaluation)



Spectral Clustering

• You want to cluster nodes of a graph into groups 
based on connectivity 

• Unnormalized spectral clustering: divide into 
groups where as few edges between groups are 
cut



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D
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4 Pick the K eigenvectors with smallest eigenvalues to get
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∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



Spectral Embedding

n

n

A Yn

K
Use K-means on Y



Normalized Spectral 
Clustering

• Unnormalized spectral embedding encourages loner 
nodes to be pushed far away from rest 

• This is indeed the min-cut solution to cut off loners 

• Instead form clusters that minimize ratio of edges cut 
to number of edges each cluster has  

• (busy groups tend to form clusters) 

• Algorithm, replace Laplacian matrix by normalized one



SPECTRAL CLUSTERING ALGORITHM (NORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the normalized Laplacian matrix L̃ = I −D

−1�2
AD

−1�2
3 Find eigen vectors v1, . . . ,vn

of L̃ (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



When to use Spectral 
Clustering

• First, even works with weighted graph, where 
weight of edge represents similarity 

• When knowledge about how clusters should be 
formed is solely decided by similarity between 
points, there is no underlying prior knowledge 



Probabilistic Modeling



PROBABILISTIC MODEL

Data: x1. . . . ,xn



PROBABILISTIC MODEL

Data: x1. . . . ,xn

✓ 2 ⇥
P✓ explains data
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PROBABILISTIC MODELS

Set of models ⇥ consists of parameters s.t. P✓ for each ✓ ∈ ⇥ is a
distribution over data.

Learning: Estimate ✓∗ ∈ ⇥ that best models given data



MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

Reasoning:
One of the models in ⇥ is the correct one
Given data we pick the one that best explains the observed data
Equivalently pick the maximum likelihood estimator,

✓
MLE

= argmax✓∈⇥ log P✓(x1, . . . ,xn

)

Often referred to as frequentist view
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MAXIMUM LIKELIHOOD PRINCIPAL

Pick ✓ ∈ ⇥ that maximizes probability of observation

✓
MLE

= argmax✓∈⇥ log P✓(x1, . . . ,xn

)�����������������������������������������������������������������������������������������������������
Likelihood

A priori all models are equally good, data could have been
generated by any one of them



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn

)
I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief

We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn

)
I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data

Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn

)
I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most

Pick ✓ that maximizes log P(✓�x1, . . . ,xn

)
I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn

)

I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn

)
I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Reasoning:
Models are abstractions that capture our belief
We update our belief based on observed data
Given data we pick the model that we believe the most
Pick ✓ that maximizes log P(✓�x1, . . . ,xn

)
I want to say : Often referred to as Bayesian view

There are Bayesian and there Bayesians

Say you had a prior belief about models provided by P (✓)



MAXIMUM A POSTERIORI

Pick ✓ ∈ ⇥ that is most likely given data

Maximize a posteriori probability of model given data

✓
MAP
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�✓)P(✓)
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THE BAYESIAN CHOICE

Don’t pick any ✓∗ ∈ ⇥
Model is simply an abstraction

We have a prosteriori distribution over models, why pick one if in
the end of the day we only want cluster assignments

For each point find probability of cluster assignment we get by
integrating over a posteriori probability of parameters ✓

We will come back to this later . . .

P (X|data) =
X

✓2⇥

P (X, ✓|data) =
X

✓2⇥

P (X|✓)P (✓|data)

✓?


