Machine Learning for Data Science (CS4786) Lecture 15

Review + Probabilistic Modeling

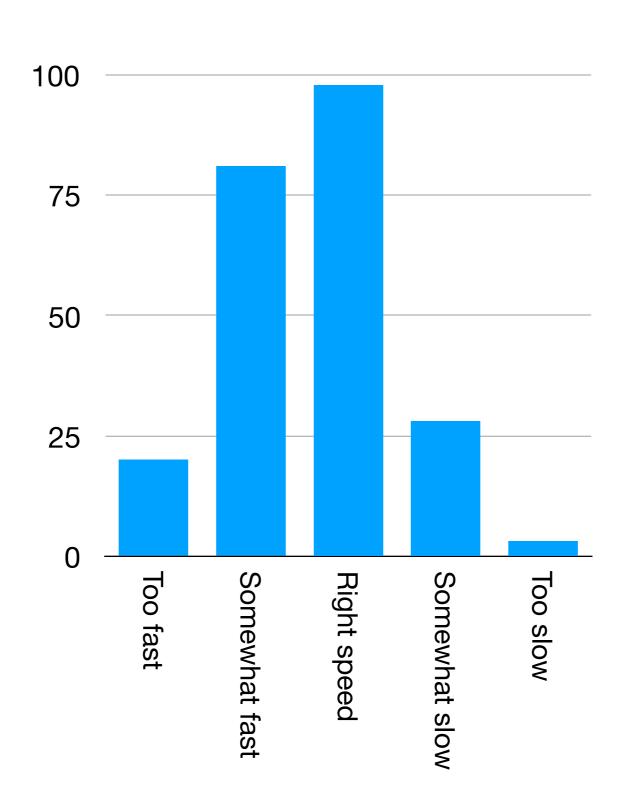
Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2017fa/

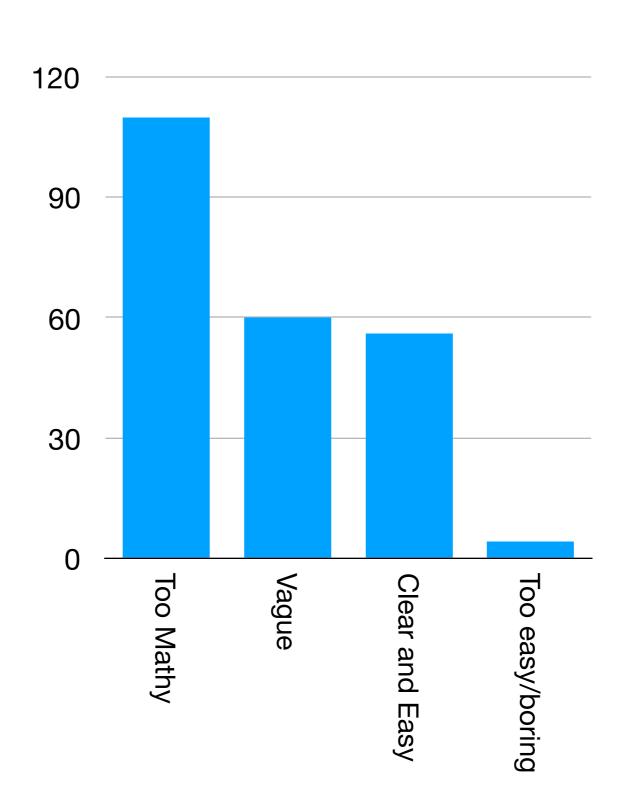
Announcements

- In-class Kaggle link is up
 - only one registration per group
 - 5 submissions per day allowed
 - Start early so you get more submissions
- Survey: Participation 95.44%! Kudos!

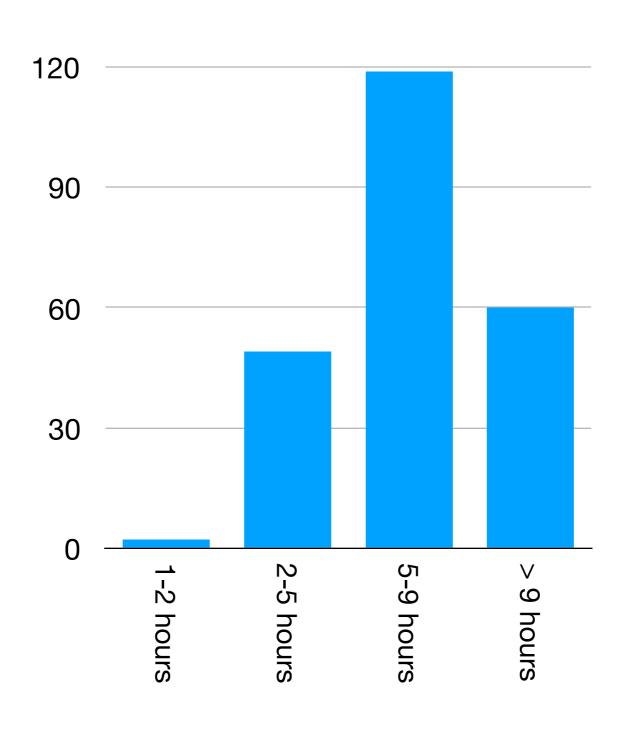
Lecture Speed

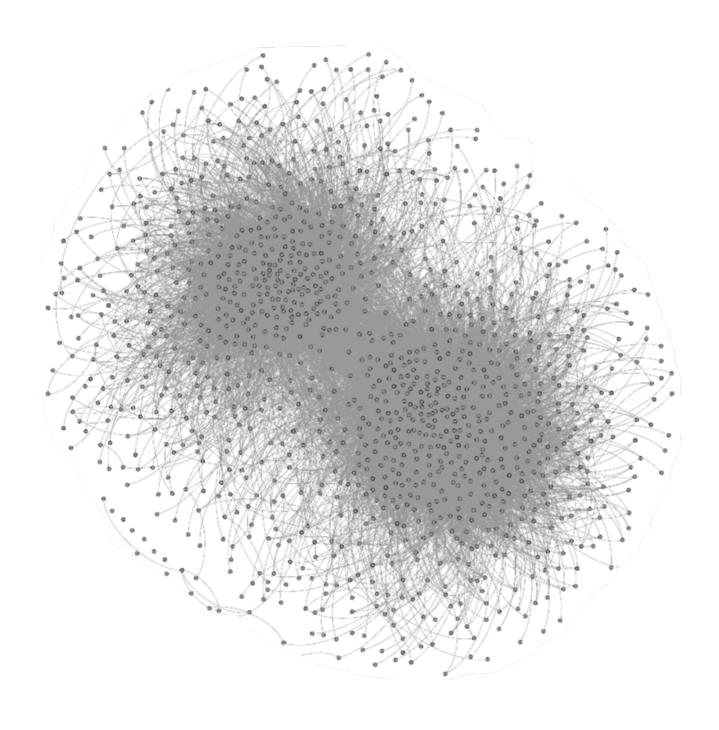


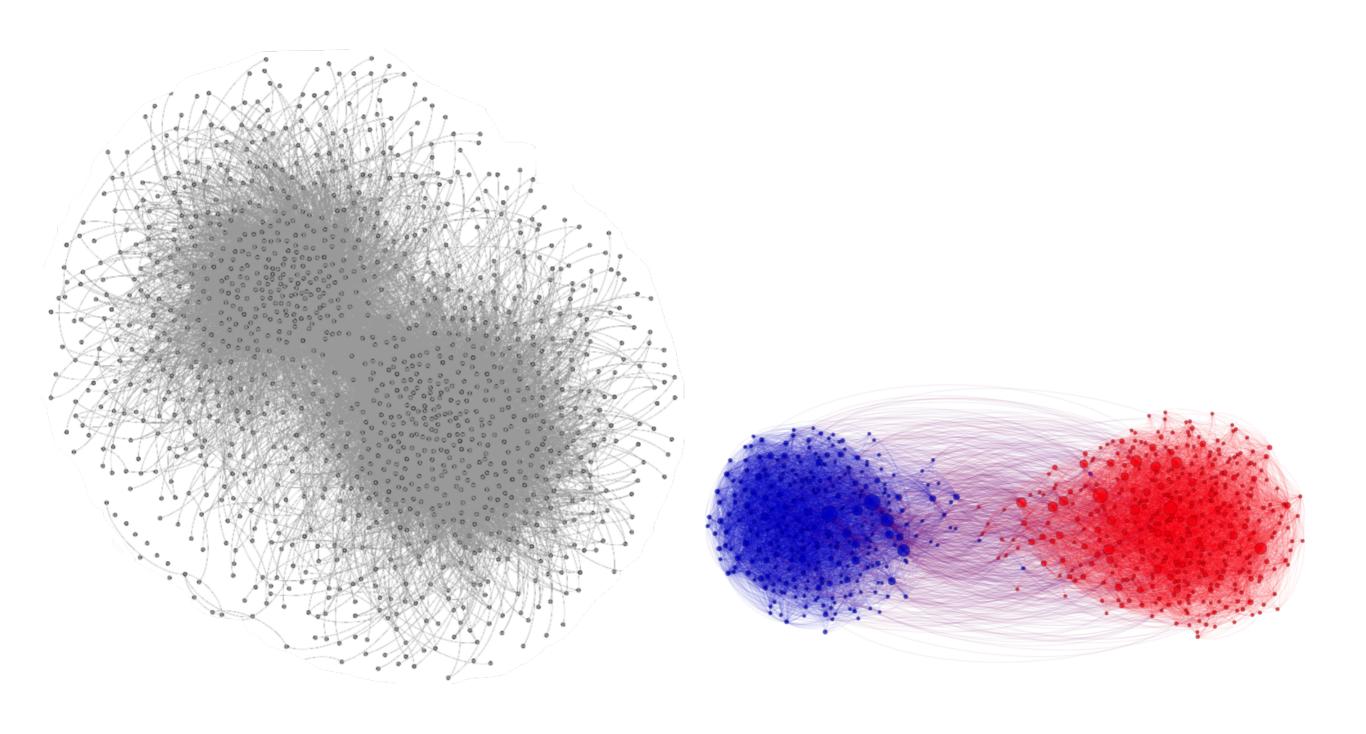
Lecture Style/Clarity

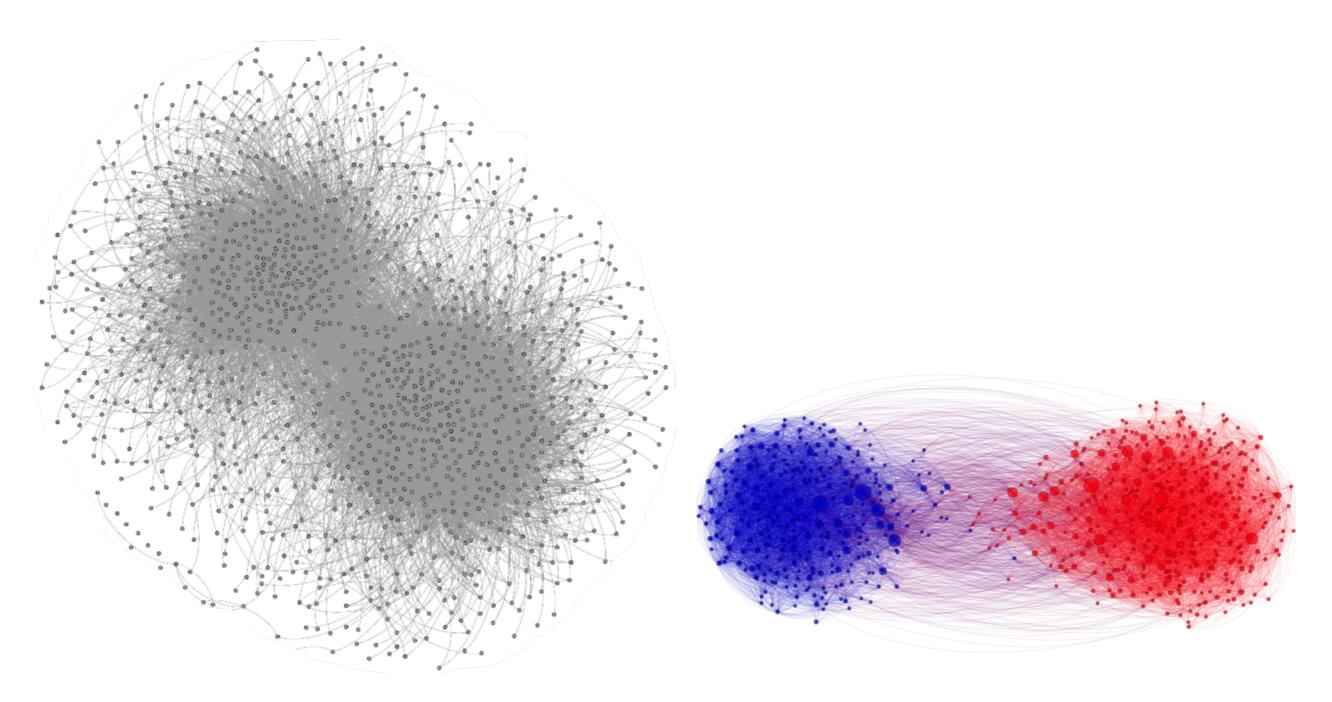


Assignment Load



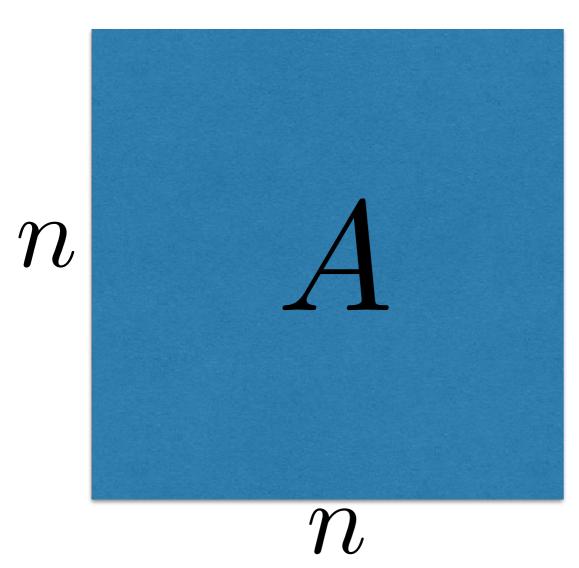




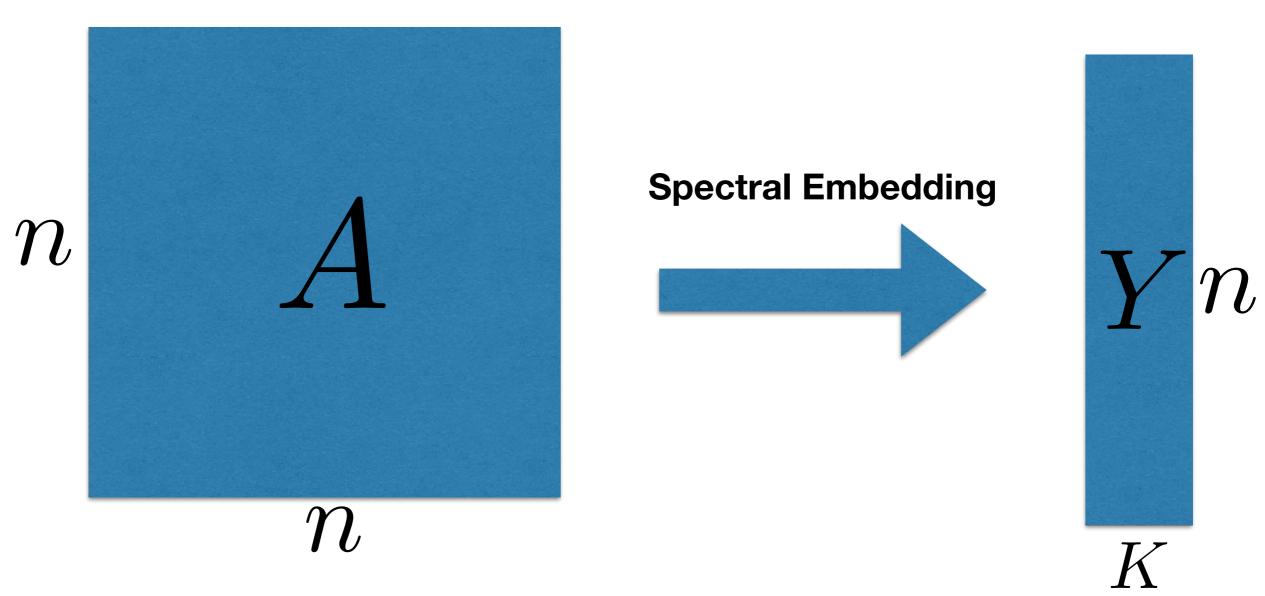


- Cluster nodes in a graph.
- Analysis of social network data.

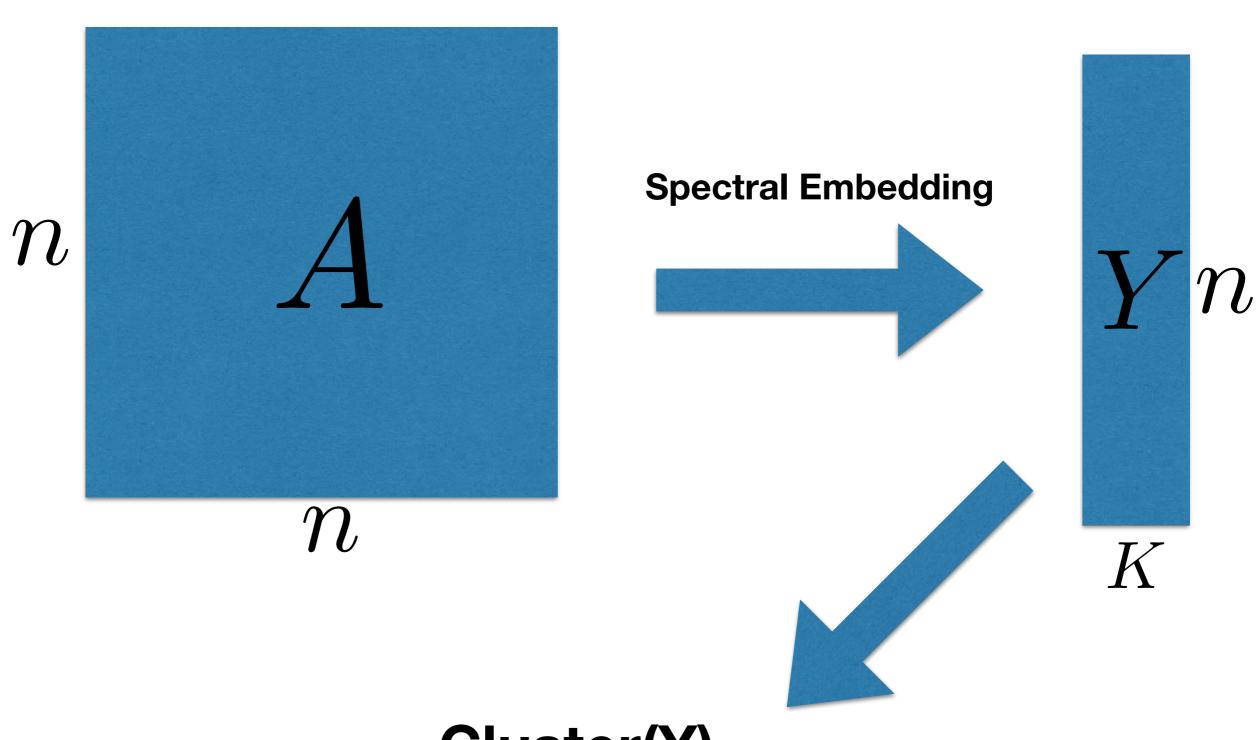
Steps



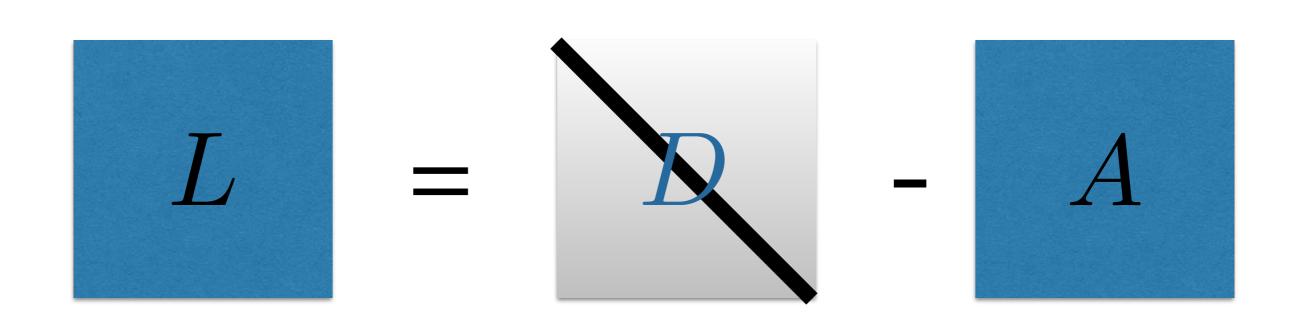
Steps

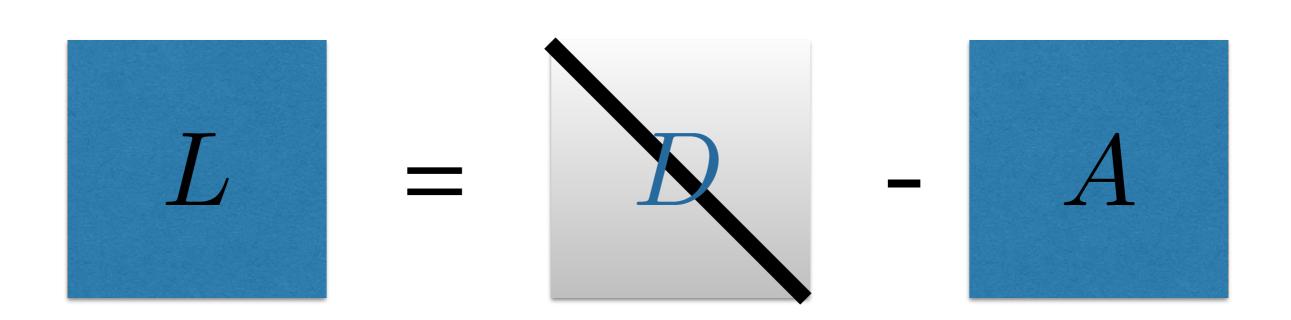


Steps



Cluster(Y)





$$D_{i,i} = \sum_{j=1}^{n} A_{i,j}$$

Spectral Embedding

Nodes linked to each other are close in embedded space

SPECTRAL CLUSTERING ALGORITHM (UNNORMALIZED)

- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- 2 Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of L (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- Use K-means clustering algorithm on y_1, \ldots, y_n

SPECTRAL CLUSTERING ALGORITHM (UNNORMALIZED)

- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- ② Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of L (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- Use K-means clustering algorithm on y_1, \ldots, y_n

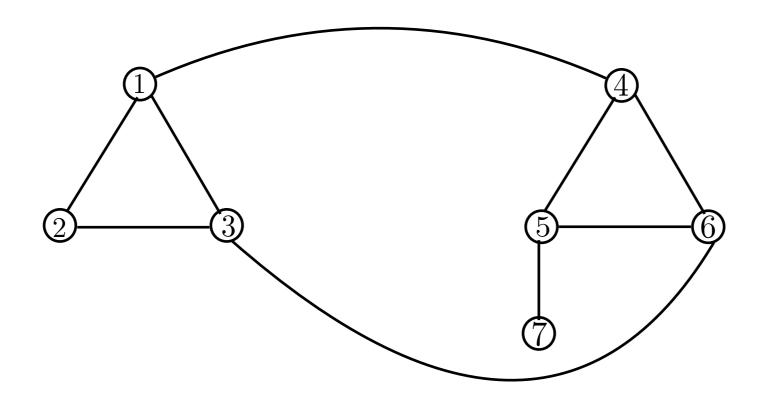
 $\mathbf{y}_1, \dots, \mathbf{y}_n$ are called spectral embedding

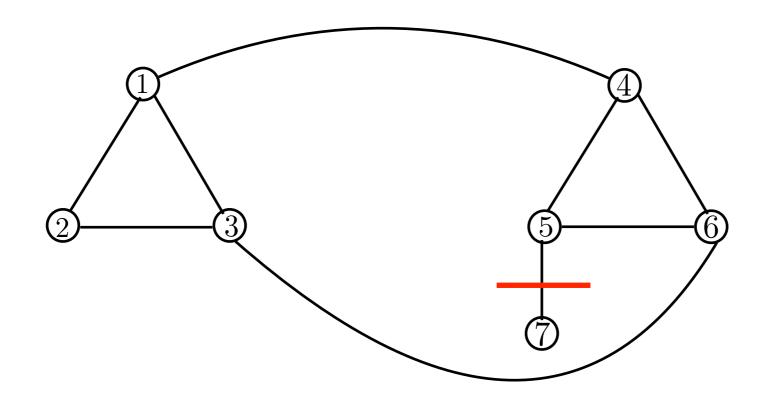
SPECTRAL CLUSTERING ALGORITHM (UNNORMALIZED)

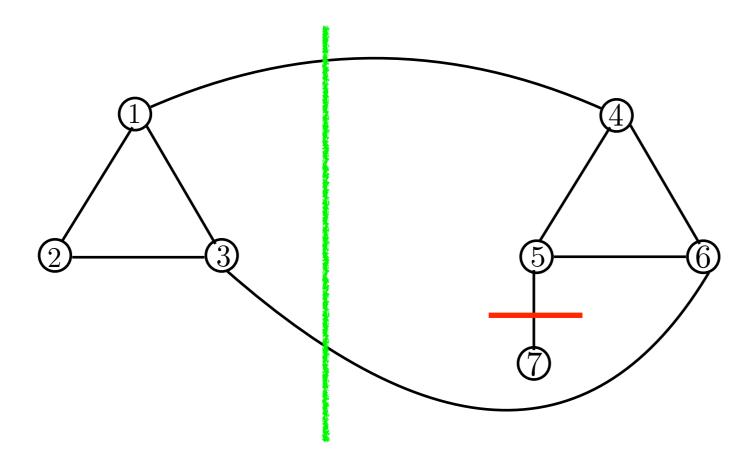
- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- ② Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of L (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- **5** Use K-means clustering algorithm on y_1, \ldots, y_n

 $\mathbf{y}_1, \dots, \mathbf{y}_n$ are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors







 Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$NCUT = \sum_{j} \frac{CUT(C_{j})}{Edges(C_{j})}$$

• As before, we want to minimize $\sum_{(i,j)\in E}(c_i-c_j)^2=c^{\top}Lc$

- As before, we want to minimize $\sum_{(i,j)\in E}(c_i-c_j)^2=c^{\mathsf{T}}Lc$
- But we also want to weight the values of c_i 's based on degree. We want high degree nodes to have larger c magnitude

- As before, we want to minimize $\sum_{(i,j)\in E}(c_i-c_j)^2=c^{\mathsf{T}}Lc$
- But we also want to weight the values of c_i 's based on degree. We want high degree nodes to have larger c magnitude
- That is we want to simultaneously maximize $\sum_{i=1}^{n} c_i^2 D_{i,i}^2 = c^{\mathsf{T}} Dc$

- As before, we want to minimize $\sum_{(i,j)\in E}(c_i-c_j)^2=c^{\top}Lc$
- But we also want to weight the values of c_i 's based on degree. We want high degree nodes to have larger c magnitude
- That is we want to simultaneously maximize $\sum_{i=1}^{n} c_i^2 D_{i,i}^2 = c^{\mathsf{T}} Dc$
- Find *c* so as to:

minimize
$$\frac{c^{\mathsf{T}}Lc}{c^{\mathsf{T}}Dc}$$

 \equiv minimize $c^{\mathsf{T}}Lc$ subject to $c^{\mathsf{T}}Dc = 1$

- As before, we want to minimize $\sum_{(i,j)\in E}(c_i-c_j)^2=c^{\top}Lc$
- But we also want to weight the values of c_i 's based on degree. We want high degree nodes to have larger c magnitude
- That is we want to simultaneously maximize $\sum_{i=1}^{n} c_i^2 D_{i,i}^2 = c^{\mathsf{T}} Dc$
- Find *c* so as to:

```
minimize \frac{c^{\top}Lc}{c^{\top}Dc}

\equiv minimize c^{\top}Lc subject to c^{\top}Dc = 1

\equiv minimize u^{\top}D^{-1/2}LD^{-1/2}u subject to ||u|| = 1
```

Minimize $c^{\top} \tilde{L} c$ s.t. $c \perp 1$

Minimize $c^{\top} \tilde{L} c$ s.t. $c \perp 1$

Approximately Minimize normalized cut!

Minimize $c^{\top} \tilde{L} c$ s.t. $c \perp 1$

Approximately Minimize normalized cut!

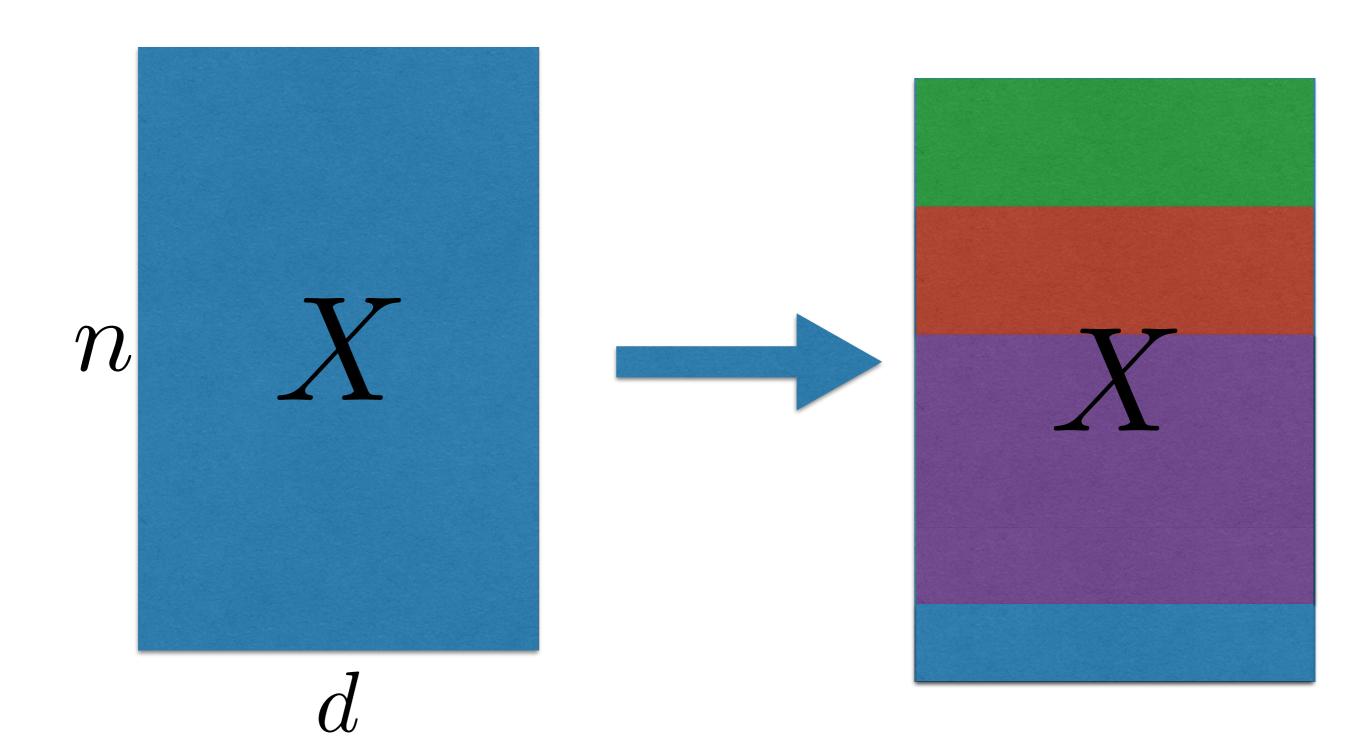
• Solution: Find second smallest eigenvectors of $\tilde{L} = I - D^{-1/2}AD^{-1/2}$

Spectral Clustering Algorithm (Normalized)

- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- 2 Calculate the normalized Laplacian matrix $\tilde{L} = I D^{-1/2}AD^{-1/2}$
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of \tilde{L} (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- **5** Use K-means clustering algorithm on y_1, \ldots, y_n

Review

CLUSTERING



K-means

- K-means algorithm: (wishful thinking)
 - Fix parameters (the k means) and compute new cluster assignments (or probabilities) for every point
 - Fix cluster assignment for all data points and reevaluate parameters (the k-means)

Single-Link Clustering

- Start with all points being their own clusters
- Until we get K-clusters, merge the closest two clusters

When to Use Single Link

- When we have dense sampling of points within each cluster
- When not to use: when we might have outliers

When to use K-means

- When we have nice spherical round equal size clusters or cluster masses are far apart
- Handles outliers better

PRINCIPAL COMPONENT ANALYSIS

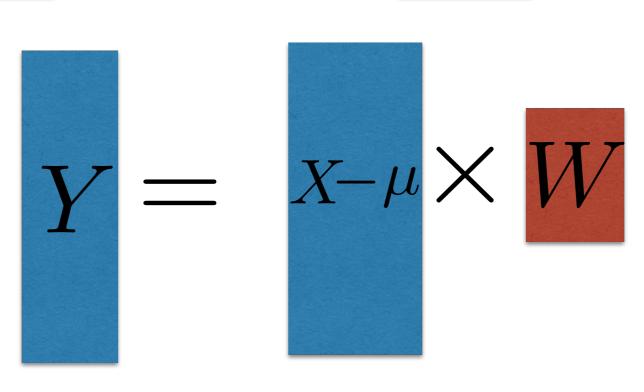
1.

$$\sum = \operatorname{cov}\left(X\right)$$

2.

$$W = eigs(\Sigma, K)$$

3.



When to use PCA

- Great when data is truly low dimensional (on a hyperplane (linear))
- Or approximately low dimensional (almost lie on plane Eg. very flat ellipsoid)
 - Eg. Dimensionality reduction for face images, for multiple biometric applications as preprocessing...

CCA ALGORITHM

1.
$$X = \begin{pmatrix} n & X_1 & X_2 \\ d_1 & d_2 \end{pmatrix}$$
2. $\sum_{=\sum_{11}\sum_{12}^{12}} = \text{cov}\left(\begin{array}{c} X \\ X \end{array}\right)$

3.
$$W_1 = \operatorname{eigs}(\Sigma_{11}^{-1}\Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}, K)$$

$$4. \quad Y_1 = X_1 - \mu_1 \times W_1$$

When to use CCA?

- CCA applies for problems where data can be split into 2 views X = [X1,X2]
- CCA picks directions of projection (in each view) where data is maximally correlated
- Maximizes correlation coefficient and not just covariance so is scale free

When to use CCA

- Scenario 1: You have two feature extraction techniques.
 - One provides excellent features for dogs Vs cats and noise on other classes
 - Other method provides excellent features for cars Vs bikes and noise for other classes
- What do we do?
 - A. Use CCA to find one common representation
 - B. Concatenate the two features extracted

When to use CCA

- Scenario 2: You have two cameras capturing images of the same objects from different angles.
- You have a feature extraction technique that provides feature vectors from each camera.
- You want to extract good features for recognizing the object from the two cameras
- What do we do?
 - A. Use CCA to find one common representation
 - B. Concatenate features provides excellent features for

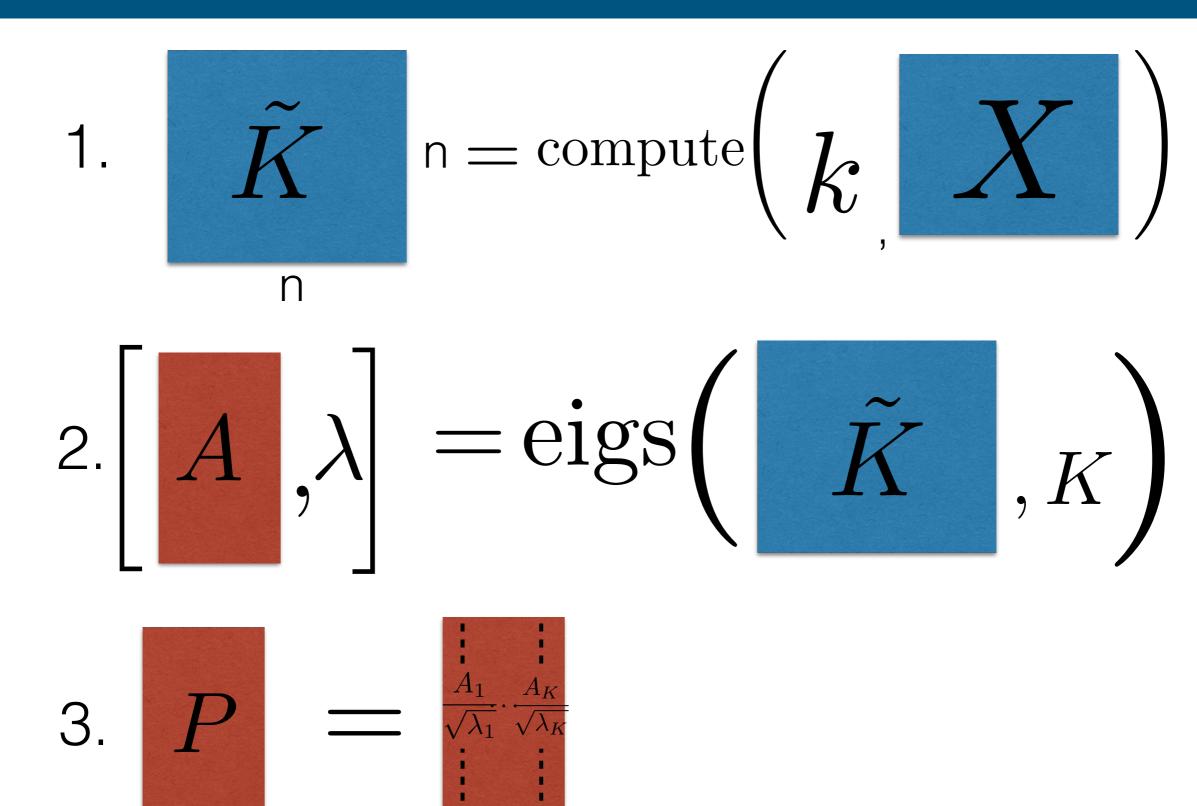
PICK A RANDOM W

$$Y = X \times \begin{bmatrix} +1 & \dots & -1 \\ -1 & \dots & +1 \\ +1 & \dots & -1 \\ & \cdot & \\ & \cdot & \\ +1 & \dots & -1 \end{bmatrix} d / \sqrt{K}$$

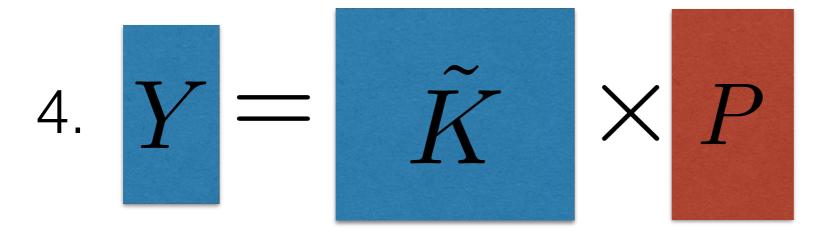
When to use RP?

- When data is huge and very large dimensional
- For PCA, CCA typically you think of K (no. of dimensions we reduce to) in double digits
- For RP think of K typically in 3-4 digit numbers
- RP guarantees preservation of inter-point distances.
 - RP unlike PCA and CCA does not project using unit vectors. (What does this mean?)

KERNEL PCA



KERNEL PCA



When to use Kernel PCA

- When data lies on some non-linear, low dimensional subspace
- Kernel function matters. (Eg. RBF kernel, only points close to a given point have non-negligible kernel evaluation)

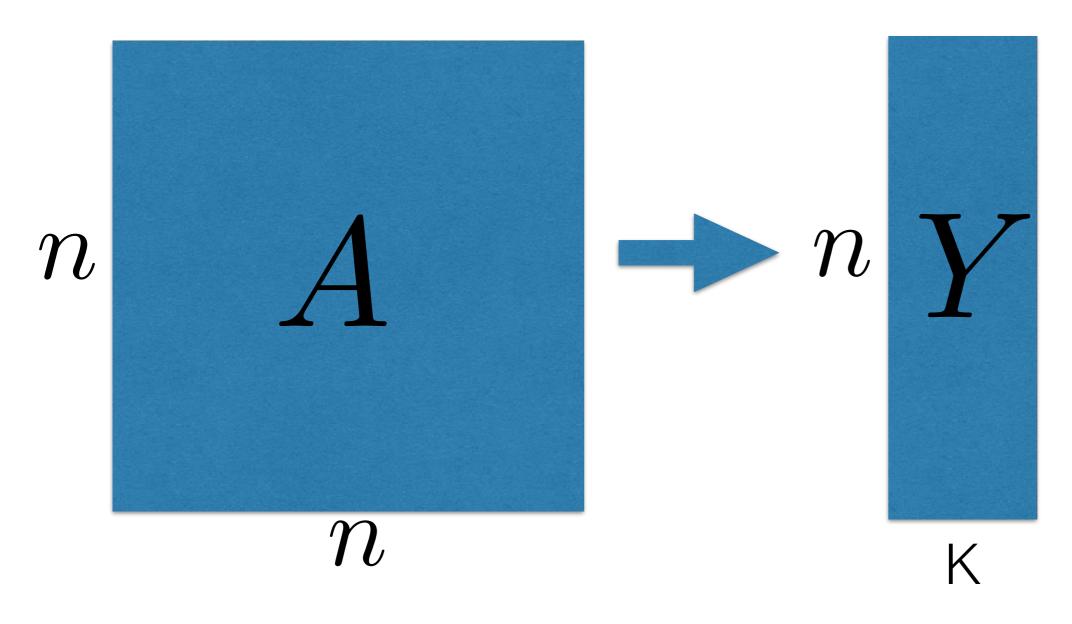
Spectral Clustering

- You want to cluster nodes of a graph into groups based on connectivity
- Unnormalized spectral clustering: divide into groups where as few edges between groups are cut

SPECTRAL CLUSTERING ALGORITHM (UNNORMALIZED)

- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- 2 Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ of L (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- Use K-means clustering algorithm on y_1, \ldots, y_n

Spectral Embedding



Use K-means on Y

Normalized Spectral Clustering

- Unnormalized spectral embedding encourages loner nodes to be pushed far away from rest
- This is indeed the min-cut solution to cut off loners
- Instead form clusters that minimize ratio of edges cut to number of edges each cluster has
 - (busy groups tend to form clusters)
- Algorithm, replace Laplacian matrix by normalized one

Spectral Clustering Algorithm (Normalized)

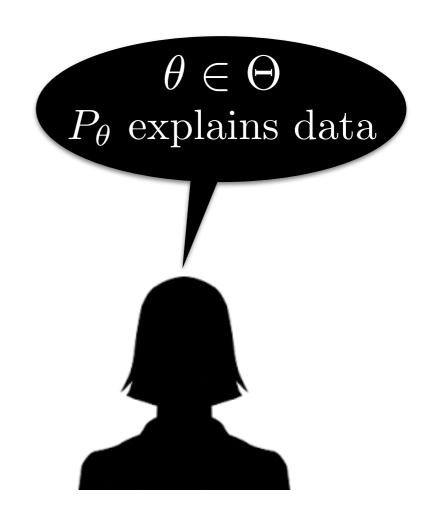
- ① Given matrix A calculate diagonal matrix D s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- 2 Calculate the normalized Laplacian matrix $\tilde{L} = I D^{-1/2}AD^{-1/2}$
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of \tilde{L} (ascending order of eigenvalues)
- Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$
- **5** Use K-means clustering algorithm on y_1, \ldots, y_n

When to use Spectral Clustering

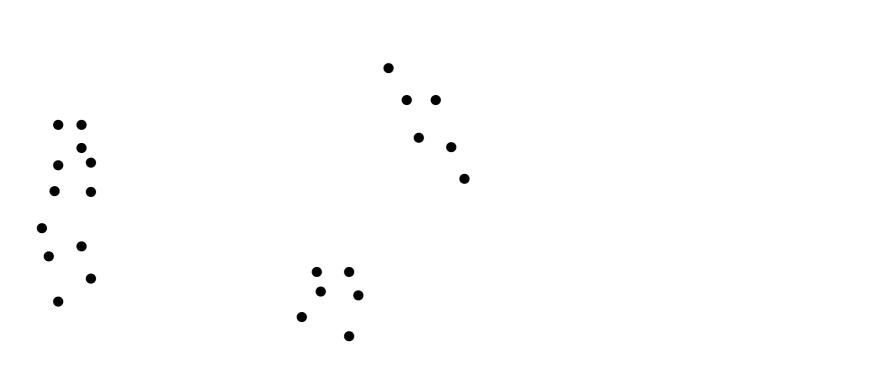
- First, even works with weighted graph, where weight of edge represents similarity
- When knowledge about how clusters should be formed is solely decided by similarity between points, there is no underlying prior knowledge

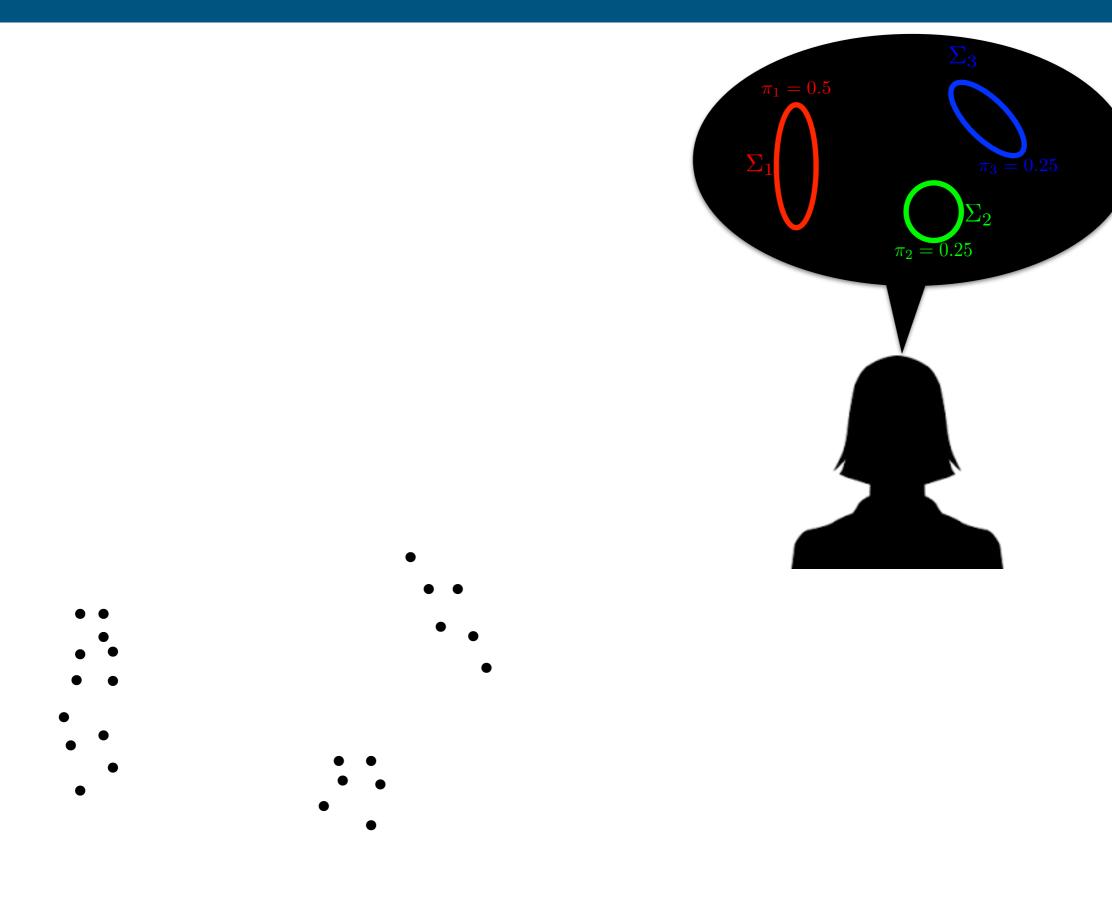
Probabilistic Modeling

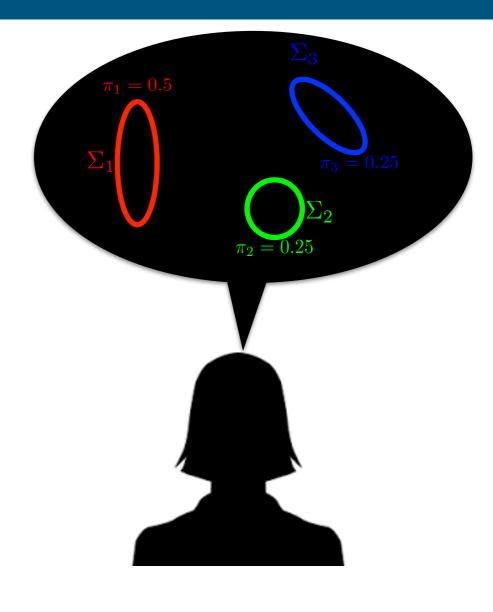
Data: $\mathbf{x}_1, \dots, \mathbf{x}_n$

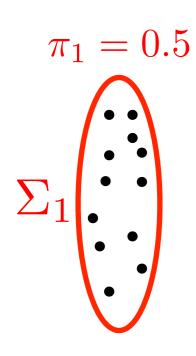


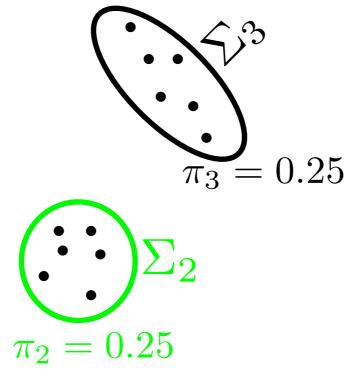
Data: $\mathbf{x}_1, \dots, \mathbf{x}_n$











• Set of models Θ consists of parameters s.t. P_{θ} for each $\theta \in \Theta$ is a distribution over data.

• Learning: Estimate $\theta^* \in \Theta$ that best models given data

Pick $\theta \in \Theta$ that maximizes probability of observation

Pick $\theta \in \Theta$ that maximizes probability of observation

Reasoning:

• One of the models in Θ is the correct one

Pick $\theta \in \Theta$ that maximizes probability of observation

- One of the models in Θ is the correct one
- Given data we pick the one that best explains the observed data

Pick $\theta \in \Theta$ that maximizes probability of observation

- One of the models in Θ is the correct one
- Given data we pick the one that best explains the observed data
- Equivalently pick the maximum likelihood estimator,

$$\theta_{MLE} = \operatorname{argmax}_{\theta \in \Theta} \log P_{\theta}(x_1, \dots, x_n)$$

Pick $\theta \in \Theta$ that maximizes probability of observation

Reasoning:

- One of the models in Θ is the correct one
- Given data we pick the one that best explains the observed data
- Equivalently pick the maximum likelihood estimator,

$$\theta_{MLE} = \operatorname{argmax}_{\theta \in \Theta} \log P_{\theta}(x_1, \dots, x_n)$$

Often referred to as frequentist view

Pick $\theta \in \Theta$ that maximizes probability of observation

$$\theta_{MLE} = \operatorname{argmax}_{\theta \in \Theta} \underbrace{\log P_{\theta}(x_1, \dots, x_n)}_{\text{Likelihood}}$$

 A priori all models are equally good, data could have been generated by any one of them

MAXIMUM A POSTERIORI

Say you had a prior belief about models provided by $P(\theta)$ Pick $\theta \in \Theta$ that is most likely given data

MAXIMUM A POSTERIORI

Say you had a prior belief about models provided by $P(\theta)$ Pick $\theta \in \Theta$ that is most likely given data

Reasoning:

Models are abstractions that capture our belief

Say you had a prior belief about models provided by $P(\theta)$ Pick $\theta \in \Theta$ that is most likely given data

- Models are abstractions that capture our belief
- We update our belief based on observed data

Say you had a prior belief about models provided by $P(\theta)$ Pick $\theta \in \Theta$ that is most likely given data

- Models are abstractions that capture our belief
- We update our belief based on observed data
- Given data we pick the model that we believe the most

Say you had a prior belief about models provided by $P(\theta)$ Pick $\theta \in \Theta$ that is most likely given data

- Models are abstractions that capture our belief
- We update our belief based on observed data
- Given data we pick the model that we believe the most
- Pick θ that maximizes $\log P(\theta|x_1,\ldots,x_n)$

Say you had a prior belief about models provided by $P(\theta)$ Pick $\theta \in \Theta$ that is most likely given data

Reasoning:

- Models are abstractions that capture our belief
- We update our belief based on observed data
- Given data we pick the model that we believe the most
- Pick θ that maximizes $\log P(\theta|x_1,\ldots,x_n)$

I want to say: Often referred to as Bayesian view

Say you had a prior belief about models provided by $P(\theta)$ Pick $\theta \in \Theta$ that is most likely given data

Reasoning:

- Models are abstractions that capture our belief
- We update our belief based on observed data
- Given data we pick the model that we believe the most
- Pick θ that maximizes $\log P(\theta|x_1, \dots, x_n)$

I want to say: Often referred to as Bayesian view

There are Bayesian and there Bayesians

MAXIMUM A POSTERIORI

Pick $\theta \in \Theta$ that is most likely given data

$$\theta_{MAP} = \operatorname{argmax}_{\theta \in \Theta} P(\theta | x_1, \dots, x_n)$$

Pick $\theta \in \Theta$ that is most likely given data

$$\theta_{MAP} = \operatorname{argmax}_{\theta \in \Theta} P(\theta | x_1, \dots, x_n)$$

$$= \operatorname{argmax}_{\theta \in \Theta} \frac{P(x_1, \dots, x_n | \theta) P(\theta)}{P(x_1, \dots, x_n)}$$

Pick $\theta \in \Theta$ that is most likely given data

$$\theta_{MAP} = \operatorname{argmax}_{\theta \in \Theta} P(\theta | x_1, \dots, x_n)$$

$$= \operatorname{argmax}_{\theta \in \Theta} \frac{P(x_1, \dots, x_n | \theta) P(\theta)}{P(x_1, \dots, x_n)}$$

$$= \operatorname{argmax}_{\theta \in \Theta} \underbrace{P(x_1, \dots, x_n | \theta) P(\theta)}_{\text{likelihood}} \underbrace{P(\theta)}_{\text{prior}}$$

Pick $\theta \in \Theta$ that is most likely given data

$$\theta_{MAP} = \operatorname{argmax}_{\theta \in \Theta} P(\theta | x_1, \dots, x_n)$$

=
$$\operatorname{argmax}_{\theta \in \Theta} \frac{P(x_1, \dots, x_n | \theta) P(\theta)}{P(x_1, \dots, x_n)}$$

= $\operatorname{argmax}_{\theta \in \Theta} \underbrace{P(x_1, \dots, x_n | \theta) P(\theta)}_{\text{likelihood}} \underbrace{P(\theta)}_{\text{prior}}$
= $\operatorname{argmax}_{\theta \in \Theta} \operatorname{log} P(x_1, \dots, x_n | \theta) + \operatorname{log} P(\theta)$

THE BAYESIAN CHOICE

Don't pick any $\theta^* \in \Theta$

- Model is simply an abstraction
- We have a prosteriori distribution over models, why pick one θ ?

$$P(X|\text{data}) = \sum_{\theta \in \Theta} P(X, \theta|\text{data}) = \sum_{\theta \in \Theta} P(X|\theta)P(\theta|\text{data})$$