Machine Learning for Data Science (CS4786) Lecture 14

Spectral Clustering

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/

Announcement

- Competition I data is out:
- https://confluence.cornell.edu/x/f3zHF

Spectral Clustering

Spectral Clustering

Spectral Clustering

- Cluster nodes in a graph.
- Analysis of social network data.

Spectral Clustering

$$
A_{i, j}= \begin{cases}1 & \text { if }(i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

$$
n
$$

A is adjacency matrix of a graph

Steps

Steps

Steps

What is the Embedding?

- Map each node in V to R^{K}
- Nodes linked to each other are close
- Disconnected groups of nodes are far from each other

Spectral Clustering

Spectral Clustering

$$
D_{i, i}=\sum_{j=1}^{n} A_{i, j}
$$

GRAPH CLUSTERING

- Fact: For a connected graph, exactly one, the smallest of eigenvalues is 0 , corresponding eigenvector is $\mathbf{1}=(1, \ldots, 1)^{\top}$ Proof: Sum of each row of L is 0 because $D_{i, i}=\sum_{j=1}^{n} A_{i, j}$ and $L=D-A$

GRaph CLUSTERING

- Fact: For general graph, number of 0 eigenvalues correspond to number of connected components. The corresponding eigenvectors are all 1's on the nodes of connected components Proof: L is block diagonal. Use connected graph result on each component.

Graph Clustering

- Fact: For general graph, number of 0 eigenvalues correspond to number of connected components. The corresponding eigenvectors are all 1's on the nodes of connected components Proof: L is block diagonal. Use connected graph result on each component.

Examples

Examples

1D

Examples

Examples

Examples

Examples

Examples

1D

Examples

3D

More Examples

Spectral Embedding

- Nodes linked to each other are close in embedded space
- What has this got to do with Laplacian matrix?

CUTS AND LAPLACIAN

$$
K=1
$$

$\operatorname{Obj}(c)=\frac{1}{2} \sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2}$

CUTS AND LAPLACIAN

$$
K=1
$$

$$
\begin{aligned}
\operatorname{Obj}(c) & =\frac{1}{2} \sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(c_{i}-c_{j}\right)^{2}
\end{aligned}
$$

CUTS AND LAPLACIAN

$$
K=1
$$

$$
\begin{aligned}
\operatorname{Obj}(c) & =\frac{1}{2} \sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(c_{i}-c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(c_{i}^{2}+c_{j}^{2}-2 c_{i} c_{j}\right)
\end{aligned}
$$

CUTS AND LAPLACIAN

$K=1$

$$
\begin{aligned}
\operatorname{Obj}(c) & =\frac{1}{2} \sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(c_{i}-c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(c_{i}^{2}+c_{j}^{2}-2 c_{i} c_{j}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} A_{i, j}\right) c_{i}^{2}+\frac{1}{2} \sum_{j=1}^{n}\left(\sum_{i=1}^{n} A_{i, j}\right) c_{j}^{2}-\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} c_{i} c_{j}
\end{aligned}
$$

CUTS AND LAPLACIAN

$K=1$

$$
\begin{aligned}
\operatorname{Obj}(c) & =\frac{1}{2} \sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(c_{i}-c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(c_{i}^{2}+c_{j}^{2}-2 c_{i} c_{j}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} A_{i, j}\right) c_{i}^{2}+\frac{1}{2} \sum_{j=1}^{n}\left(\sum_{i=1}^{n} A_{i, j}\right) c_{j}^{2}-\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} c_{i} c_{j} \\
& =\frac{1}{2} \sum_{i=1}^{n} D_{i, i} c_{i}^{2}+\frac{1}{2} \sum_{j=1}^{n} D_{j, j} c_{j}^{2}-\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} c_{i} c_{j}
\end{aligned}
$$

CUTS AND LAPLACIAN

$K=1$

$$
\begin{aligned}
\operatorname{Obj}(c) & =\frac{1}{2} \sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(c_{i}-c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j}\left(c_{i}^{2}+c_{j}^{2}-2 c_{i} c_{j}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} A_{i, j}\right) c_{i}^{2}+\frac{1}{2} \sum_{j=1}^{n}\left(\sum_{i=1}^{n} A_{i, j}\right) c_{j}^{2}-\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} c_{i} c_{j} \\
& =\frac{1}{2} \sum_{i=1}^{n} D_{i, i} c_{i}^{2}+\frac{1}{2} \sum_{j=1}^{n} D_{j, j} c_{j}^{2}-\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i, j} c_{i} c_{j} \\
& =c^{\top} D c-c^{\top} A c=c^{\top} L c
\end{aligned}
$$

Spectral Clustering, K = 1

Hence to find the solution we need to solve for

$$
\text { Minimize } c^{\top} L c \quad \text { s.t. } \quad\|c\|=1
$$

Spectral Clustering, K = 1

Hence to find the solution we need to solve for

$$
\text { Minimize } c^{\top} L c \quad \text { s.t. } \quad\|c\|=1
$$

Hence solution c to above is an Eigen vector, first smallest one is the all 1's vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0

Spectral Clustering, K >1

- Solution obtained by considering the second smallest up to $K^{\text {th }}$ smallest eigenvectors

$$
\operatorname{Obj}(c)=\sum_{k=1}^{K} c^{k^{\top}} L c^{k}
$$

c^{k} s are orthogonal to each other and the all ones vector

Spectral Clustering Algorithm (UNNORMALIZED)

(1) Given matrix A calculate diagonal matrix D s.t. $D_{i, i}=\sum_{j=1}^{n} A_{i, j}$
(2) Calculate the Laplacian matrix $L=D-A$

- Find eigen vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of L (ascending order of eigenvalues)
(1) Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$
(0) Use K-means clustering algorithm on $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$

Spectral Clustering Algorithm (UNNORMALIZED)

(1) Given matrix A calculate diagonal matrix D s.t. $D_{i, i}=\sum_{j=1}^{n} A_{i, j}$
(2) Calculate the Laplacian matrix $L=D-A$

- Find eigen vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of L (ascending order of eigenvalues)
(1) Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$
(0) Use K-means clustering algorithm on $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$

$$
\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \text { are called spectral embedding }
$$

Spectral Clustering Algorithm (UNNORMALIZED)

(1) Given matrix A calculate diagonal matrix D s.t. $D_{i, i}=\sum_{j=1}^{n} A_{i, j}$
(2) Calculate the Laplacian matrix $L=D-A$

- Find eigen vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of L (ascending order of eigenvalues)
(1) Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$
© Use K-means clustering algorithm on $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$

$$
\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \text { are called spectral embedding }
$$

Embeds the n nodes into K-1 dimensional vectors

- Unnormalized Spectral clustering aims to cluster based on minimizing cut
- Unnormalized Spectral clustering aims to cluster based on minimizing cut
- cut: Number of edges that need to be deleted to have no links between the cluster and other nodes outside
- Unnormalized Spectral clustering aims to cluster based on minimizing cut
- cut: Number of edges that need to be deleted to have no links between the cluster and other nodes outside
- But is cut the right metric?

Normalized Cut

- Why cut is perhaps not a good measure?

Normalized Cut

- Why cut is perhaps not a good measure?

Normalized Cut

- Why cut is perhaps not a good measure?

Normalized Cut

- Why cut is perhaps not a good measure?

Ratio Cut

- Why cut is perhaps not a good measure?
- Fixes?

NORMALIZED CuT

- Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$
\operatorname{NCUT}=\sum_{j} \frac{\operatorname{CUT}\left(C_{j}\right)}{\operatorname{Edges}\left(C_{j}\right)}
$$

Normalized Cut

- Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$
\operatorname{NCUT}=\sum_{j} \frac{\operatorname{CUT}\left(C_{j}\right)}{\operatorname{Edges}\left(C_{j}\right)}
$$

Normalized Cut

- Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$
\mathrm{NCUT}=\sum_{j} \frac{\operatorname{CUT}\left(C_{j}\right)}{\operatorname{Edges}\left(C_{j}\right)}
$$

- Example $K=2$

$$
\operatorname{CUT}\left(C_{1}, C_{2}\right)\left(\frac{1}{\operatorname{Edges}\left(C_{1}\right)}+\frac{1}{\operatorname{Edges}\left(C_{2}\right)}\right)
$$

Normalized Cut

- Normalized cut: Minimize sum of ratio of number of edges cut per cluster and number of edges within cluster

$$
\mathrm{NCUT}=\sum_{j} \frac{\operatorname{CUT}\left(C_{j}\right)}{\operatorname{Edges}\left(C_{j}\right)}
$$

- Example $K=2$

$$
\operatorname{CUT}\left(C_{1}, C_{2}\right)\left(\frac{1}{\operatorname{Edges}\left(C_{1}\right)}+\frac{1}{\operatorname{Edges}\left(C_{2}\right)}\right)
$$

- This is an NP hard problem! ... so relax

Normalized Spectral Clustering

- As before, we want to minimize $\sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2}=c^{\top} L c$

Normalized Spectral Clustering

- As before, we want to minimize $\sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2}=c^{\top} L c$
- But we also want to weight the values of c_{i} 's based on degree. We want high degree nodes to have larger c magnitude

Normalized Spectral Clustering

- As before, we want to minimize $\sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2}=c^{\top} L c$
- But we also want to weight the values of c_{i} 's based on degree. We want high degree nodes to have larger c magnitude
- That is we want to simultaneously maximize $\sum_{i=1}^{n} c_{i}^{2} D_{i, i}^{2}=c^{\top} D c$

Normalized Spectral Clustering

- As before, we want to minimize $\sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2}=c^{\top} L c$
- But we also want to weight the values of c_{i} 's based on degree. We want high degree nodes to have larger c magnitude
- That is we want to simultaneously maximize $\sum_{i=1}^{n} c_{i}^{2} D_{i, i}^{2}=c^{\top} D c$
- Find c so as to:

$$
\begin{aligned}
& \text { minimize } \frac{c^{\top} L c}{c^{\top} D c} \\
& \equiv \text { minimize } c^{\top} L c \text { subject to } c^{\top} D c=1
\end{aligned}
$$

Normalized Spectral Clustering

- As before, we want to minimize $\sum_{(i, j) \in E}\left(c_{i}-c_{j}\right)^{2}=c^{\top} L c$
- But we also want to weight the values of c_{i} 's based on degree. We want high degree nodes to have larger c magnitude
- That is we want to simultaneously maximize $\sum_{i=1}^{n} c_{i}^{2} D_{i, i}^{2}=c^{\top} D c$
- Find c so as to:

$$
\begin{aligned}
& \operatorname{minimize} \frac{c^{\top} L c}{c^{\top} D c} \\
& \equiv \text { minimize } c^{\top} L c \text { subject to } c^{\top} D c=1 \\
& \equiv \text { minimize } u^{\top} D^{-1 / 2} L D^{-1 / 2} u \text { subject to }\|u\|=1
\end{aligned}
$$

Spectral Clustering

Minimize $c^{\top} \tilde{L} c$ s.t. $c \perp \mathbf{1}$

Spectral Clustering

Minimize $c^{\top} \tilde{L} c$ s.t. $c \perp \mathbf{1}$

Approximately Minimize normalized cut!

Spectral Clustering

Minimize $c^{\top} \tilde{L} c$ s.t. $c \perp 1$

Approximately Minimize normalized cut!

- Solution: Find second smallest eigenvectors of $\tilde{L}=I-D^{-1 / 2} A D^{-1 / 2}$

Spectral Clustering Algorithm (Normalized)

(1) Given matrix A calculate diagonal matrix D s.t. $D_{i, i}=\sum_{j=1}^{n} A_{i, j}$
(2) Calculate the normalized Laplacian matrix $\tilde{L}=I-D^{-1 / 2} A D^{-1 / 2}$
(3) Find eigen vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ of \tilde{L} (ascending order of eigenvalues)
(9) Pick the K eigenvectors with smallest eigenvalues to get $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n} \in \mathbb{R}^{K}$
(3) Use K-means clustering algorithm on $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$

Demo

Spectral Clustering

Spectral Clustering

