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Announcement

• Competition I data is out: 


• https://confluence.cornell.edu/x/f3zHF

https://confluence.cornell.edu/x/f3zHF


TELL ME WHO YOUR FRIENDS ARE . . .

Cluster nodes in a graph.
Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph
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What is the Embedding?

• Map each node in V to R   

• Nodes linked to each other are close 

• Disconnected groups of nodes are far from each 
other

K
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SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph

AL = -D

Di,i =
nX

j=1

Ai,j



GRAPH CLUSTERING

Fact: For a connected graph, exactly one, the smallest of
eigenvalues is 0, corresponding eigenvector is 1 = (1, . . . ,1)�
Proof: Sum of each row of L is 0 because D

i,i = ∑n

j=1 A

i,j and
L = D −A
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GRAPH CLUSTERING

Fact: For general graph, number of 0 eigenvalues correspond to
number of connected components. The corresponding
eigenvectors are all 1’s on the nodes of connected components
Proof: L is block diagonal. Use connected graph result on each
component.
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More Examples



Spectral Embedding

• Nodes linked to each other are close in embedded 
space 

• What has this got to do with Laplacian matrix?



CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let c
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SPECTRAL CLUSTERING, K = 2

Hence to find the solution we need to solve for

Minimize c

�
Lc s.t. ∀i ∈ [n], �c

i

� = 1

Since ∀i ∈ [n], �c
i

� = 1, we have �c�2 =√n and so relaxing
(approximating) the optimization:

Minimize c

�
Lc s.t. �c�2 =√n

Hence solution c to above is an Eigen vector, first smallest one is the all
1’s vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0

1

kck = 1
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SPECTRAL CLUSTERING, K > 2

Solution obtained by considering the second smallest up to K

th

smallest eigenvectors
If instead of c

i

= ±1 make for each k ∈ [K], c

k

i

to be indicator of
whether point i belongs to cluster K or not, then

Cut = K�
k=1
(ck)�Lc

k

Proceeding in same fashion as for binary case, we can conclude
that solution to relaxed c

k’s above are the bottom k eigen vectors
Finally to obtain a clustering we use k means on these c

k’s

>1

Obj(c) =
KX

k=1

ck
>
Lck

ck’s are orthogonal to each other and the all ones vector



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn

y1, . . . ,yn are called spectral embedding
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(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn

y1, . . . ,yn are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors
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• Unnormalized Spectral clustering aims to cluster 
based on minimizing cut

• cut: Number of edges that need to be deleted to 
have no links between the cluster and other 
nodes outside

• But is cut the right metric?



NORMALIZED CUT

Why cut is perhaps not a good measure?

Normalized cut: Minimize sum of ratio of number of edges cut
per cluster and number of edges within cluster

NCUT =�
j

CUT(C
j

)
Edges(C

j

)
Example K = 2

CUT(C1,C2)� 1
Edges(C1) +

1
Edges(C2)�

Minimize CUT(C1,C2) s.t. Edges(C1) = Edges(C2)
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RATIO CUT

Why cut is perhaps not a good measure?

Fixes?

Perhaps Ratio Cut ∶ CUT(C1,C2)� 1�C1� + 1�C2��
Set c

i

=
�����������

� �C2��C1� if i ∈ C1

−� �C1��C2� otherwise

Verify that c

�
Lc = n ×Ratio Cut and �c�2 =√n (and c ⊥ 1)

Relaxed solution is same as Unnormalized Spectral clustering

1

2 3

4

5 6

7
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NORMALIZED SPECTRAL CLUSTERING

As before, we want to minimize ∑(i,j)∈E(ci − cj)2 = c�Lc

But we also want to weight the values of ci’s based on degree.
We want high degree nodes to have larger c magnitude

That is we want to simultaneously maximize ∑n
i=1 c2

i D2
i,i = c�Dc

Find c so as to:

minimize
c�Lc
c�Dc≡minimize c�Lc subject to c�Dc = 1

≡minimize u�D−1�2LD−1�2u subject to �u� = 1
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SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph

Minimize c>L̃c s.t. c ? 1

Approximately Minimize normalized cut!

NORMALIZED CUT

First note that Edges(C
i

) = ∑
k∶x

k

∈C
i

D

k,k

Set c

i

=
�����������

�
Edges(C2)
Edges(C1) if i ∈ C1

−�Edges(C1)
Edges(C2) otherwise

Verify that c

�
Lc = �E� ×NCut and c

�
Dc = �E� (and Dc ⊥ 1)

Hence we relax Minimize NCUT(C) to

Minimize
c

�
Lc

c

�
Dc

s.t. Dc ⊥ 1

Solution: Find second smallest eigenvectors of L̃ = I −D

−1�2
AD

−1�2



SPECTRAL CLUSTERING ALGORITHM (NORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the normalized Laplacian matrix L̃ = I −D

−1�2
AD

−1�2
3 Find eigen vectors v1, . . . ,vn

of L̃ (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



Demo
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Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph
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