Machine Learning for Data Science (CS4786)

Lecture 14

Spectral Clustering

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/



Announcement

e Competition | data is out:

e https://confluence.cornell.edu/x/f3zHF



https://confluence.cornell.edu/x/f3zHF
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SPECTRAL CLUSTERING




SPECTRAL CLUSTERING

@ Cluster nodes in a graph.

@ Analysis of social network data.



SPECTRAL CLUSTERING

Ai’j:{ 1 if(i,j) e E

0 otherwise

n

A is adjacency matrix of a graph
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Spectral Embedding




Steps

Spectral Embedding

Cluster(Y)



What is the Embedding?

* Map each node inV to R"
* Nodes linked to each other are close

* Disconnected groups of nodes are far from each
other
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GRAPH CLUSTERING

@ Fact: For a connected graph, exactly one, the smallest of
eigenvalues is 0, corresponding eigenvectoris 1 = (1,.. ., 1)'

Proof: Sum of each row of L is 0 because D; ; = 2}11 A;jand
L=D-A



GRAPH CLUSTERING

@ Fact: For general graph, number of 0 eigenvalues correspond to
number of connected components. The corresponding
eigenvectors are all 1’s on the nodes of connected components

Proof: L is block diagonal. Use connected graph result on each
component.
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More Examples



Spectral Embedding

e Nodes linked to each other are close in embedded
space

* What has this got to do with Laplacian matrix”
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SPECTRAL CLUSTERING, K =1

Hence to find the solution we need to solve for

Minimize ¢"Le s.t. ||| =1



SPECTRAL CLUSTERING, K =1

Hence to find the solution we need to solve for

Minimize ¢"Le s.t. ||| =1

Hence solution ¢ to above is an Eigen vector, first smallest one is the all
1’s vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0



SPECTRAL CLUSTERING, K >1

e Solution obtained by considering the second smallest up to K"
smallest eigenvectors

K
Obj(c Z

c™’s are orthogonal to each other and the all ones vector



SPECTRAL CLUSTERING ALGORITHM

(UNNORMALIZED)

@ Given matrix A calculate diagonal matrix D s.t. D; ; = 2;7:1 Ajj

@ C(alculate the Laplacian matrix L=D - A
@ Find eigen vectors vy, .. ., v,, of L (ascending order of eigenvalues)

© Pick the K eigenvectors with smallest eigenvalues to get
K
Yi,-.-, Yn e R

@ Use K-means clustering algorithm on yq, . . ., Vn
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SPECTRAL CLUSTERING ALGORITHM

(UNNORMALIZED)

@ Given matrix A calculate diagonal matrix D s.t. D; ; = 2;7:1 Ajj

@ C(alculate the Laplacian matrix L=D - A
@ Find eigen vectors vy, .. ., v,, of L (ascending order of eigenvalues)

© Pick the K eigenvectors with smallest eigenvalues to get
K
Yi,-.-, Yn e R

@ Use K-means clustering algorithm on yy, . . ., Vi
yi,...,¥Yn are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors






* Unnormalized Spectral clustering aims to cluster
based on minimizing cut



* Unnormalized Spectral clustering aims to cluster
based on minimizing cut

* cut: Number of edges that need to be deleted to
have no links between the cluster and other
nodes outside



* Unnormalized Spectral clustering aims to cluster
based on minimizing cut

* cut: Number of edges that need to be deleted to
have no links between the cluster and other
nodes outside

* But is cut the right metric?



NORMALIZED CUT

@ Why cut is perhaps not a good measure?
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NORMALIZED CUT

@ Why cut is perhaps not a good measure?




RATIO CUT

@ Why cut is perhaps not a good measure?

@ Fixes?




NORMALIZED CUT

@ Normalized cut: Minimize sum of ratio of number of edges cut
per cluster and number of edges within cluster

CUT(C))

T =
NCUT = 2, Edges(C;)

]




NORMALIZED CUT

@ Normalized cut: Minimize sum of ratio of number of edges cut
per cluster and number of edges within cluster

CUT(C;)
NCUT = ) /
]- Edges(C;)
()
J
O O




NORMALIZED CUT

@ Normalized cut: Minimize sum of ratio of number of edges cut
per cluster and number of edges within cluster

CUT(C))

T =
NCUT = 2, Edges(C;)

]

@ Example K =2

1 1
T(Cq, C
CUT(Cq,C) (Edges(Cl) i EdgeS(Cz))



NORMALIZED CUT

@ Normalized cut: Minimize sum of ratio of number of edges cut
per cluster and number of edges within cluster

CUT(C))
NCUT = ) /
]- Edges(C;)
@ Example K =2
CUT(Cq, Cp) ! + !
b Edges(C;) Edges(C,)

@ This is an NP hard problem! ...so relax



NORMALIZED SPECTRAL CLUSTERING

® As before, we want to minimize ¥ ; i)cg(¢i - C]-)2 =c'Lc
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We want high degree nodes to have larger c magnitude
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NORMALIZED SPECTRAL CLUSTERING

® As before, we want to minimize ¥ ; i)cg(¢i - c]-)2 =c'Lc

@ But we also want to weight the values of ¢;’s based on degree.
We want high degree nodes to have larger ¢ magnitude

o That is we want to simultaneously maximize Y./, ¢D?, = ¢"Dc

@ Find ¢ so as to:

c'Lc
c'Dc
= minimize c¢'Lc subjecttoc'Dc=1

minimize

= minimize "D Y2LD ™12y subject to |u| = 1



SPECTRAL CLUSTERING

Minimize ¢' Le st. ¢ L 1
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Minimize ¢' Le st. ¢ L 1

Approximately Minimize normalized cut!



SPECTRAL CLUSTERING

Minimize ¢' Le st. ¢ L 1

Approximately Minimize normalized cut!

@ Solution: Find second smallest eigenvectors of [=1-D12AD1/2



SPECTRAL CLUSTERING ALGORITHM (NORMALIZED)

O Given matrix A calculate diagonal matrix D s.t. D;; = 371 A

@ Calculate the normalized Laplacian matrix L=I-D12AD1/2
@ Find eigen vectors vy, .. ., v, of L (ascending order of eigenvalues)

© Pick the K eigenvectors with smallest eigenvalues to get
K
Y1::--, Yn e R

@ Use K-means clustering algorithm onyy, . . ., Vi



Demo
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SPECTRAL CLUSTERING




