
Machine Learning for Data Science (CS4786)
Lecture 13

Kernel PCA & Spectral Clustering

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/



EXAMPLE

Y

X

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5



A FIRST CUT

Given x

t

∈ Rd, the feature space vector is given by mapping

�(x
t

) = (x
t

[1], . . . ,x
t

[d],x
t

[1] ⋅ x
t

[1],x
t

[1] ⋅ x
t

[2], . . . ,x
t

[d] ⋅ x
t

[d], . . .)�

Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?



A FIRST CUT

Given x

t

∈ Rd, the feature space vector is given by mapping

�(x
t

) = (x
t

[1], . . . ,x
t

[d],x
t

[1] ⋅ x
t

[1],x
t

[1] ⋅ x
t

[2], . . . ,x
t

[d] ⋅ x
t

[d], . . .)�

Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?



A FIRST CUT

Given x

t

∈ Rd, the feature space vector is given by mapping

�(x
t

) = (x
t

[1], . . . ,x
t

[d],x
t

[1] ⋅ x
t

[1],x
t

[1] ⋅ x
t

[2], . . . ,x
t

[d] ⋅ x
t

[d], . . .)�

Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?



A FIRST CUT

Given x

t

∈ Rd, the feature space vector is given by mapping

�(x
t

) = (x
t

[1], . . . ,x
t

[d],x
t

[1] ⋅ x
t

[1],x
t

[1] ⋅ x
t

[2], . . . ,x
t

[d] ⋅ x
t

[d], . . .)�

Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?



KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.



KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.



KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.



KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.



KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.



LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�



LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�



LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�



LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�



LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:

↵
k

[t] = 1
�

k

n

�x�
t

� n�
s=1

↵
k

[s]x
s

�� = 1
�

k

n

n�
s=1

↵
k

[s]x�
t

x

s

Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃



LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:

↵
k

[t] = 1
�

k

n

�x�
t

� n�
s=1

↵
k

[s]x
s

�� = 1
�

k

n

n�
s=1

↵
k

[s]x�
t

x

s

Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃



LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:

↵
k

[t] = 1
�

k

n

�x�
t

� n�
s=1

↵
k

[s]x
s

�� = 1
�

k

n

n�
s=1

↵
k

[s]x�
t

x

s

Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃



LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:

↵
k

[t] = 1
�

k

n

�x�
t

� n�
s=1

↵
k

[s]x
s

�� = 1
�

k

n

n�
s=1

↵
k

[s]x�
t

x

s

Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃



LETS REWRITE PCA

Further, since W

k

is unit norm,

1 = �W
k

�22 = � n�
t=1

↵
k

[t]x
t

�� � n�
s=1

↵
k

[s]x
s

� = ↵
k

�
K̃↵

k

= n�
k

↵
k

�↵
k

Hence �↵
k

�2 = 1
n�

k

where �
k

is the k’th eigen value of matrix K̃



LETS REWRITE PCA

However W

k

itself is in feature space and has the same
dimensionality of �(x) (which is possibly infinite)!
However, the projections are in K dimensions and we can hope to
directly compute these as:

y

i

[k] = x

�
i

W

k

= n�
t=1

↵
k

[t]K̃
t,i



LETS REWRITE PCA

However W

k

itself is in feature space and has the same
dimensionality of �(x) (which is possibly infinite)!
However, the projections are in K dimensions and we can hope to
directly compute these as:

y

i

[k] = x

�
i

W

k

= n�
t=1

↵
k

[t]K̃
t,i



REWRITTING PCA

We assumed centered data, what if its not,

K̃

s,t = �xt

− 1
n

n�
u=1

x

u

)�� �x
s

− 1
n

n�
u=1

x

u

�
= x

�
t

x

s

− �1
n

n�
u=1

x

u

�� x

s

− �1
n

n�
u=1

x

u

�� x

t

+ 1
n

2 �
n�

u=1
x

u

�� � n�
v=1

x

v

�
= x

�
t

x

s

− 1
n

n�
u=1

x

�
u

x

s

− 1
n

n�
u=1

x

�
u

x

t

+ 1
n

2

n�
u=1

n�
v=1

x

�
u

x

v



REWRITING PCA

Equivalently, if Kern is the matrix (Kern
t,s = x

�
t

x

s

),

K̃ = Kern − (1n×n

×Kern)
n

− (Kern × 1

n×n

)
n

+ (1n×n

×Kern × 1

n×n

)
n

2



PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2



PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2



PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2



PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2



KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space



KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space



KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space



KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!



KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!

Kern =

2

666666664

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

· · · ·
· · · ·
· · · ·

k(xn�1, x1) k(xn�1, x2) . . . k(xn�1, xn)
k(xn, x1) k(xn, x2) . . . k(xn, xn)

3

777777775

n

n

1.



KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!

Kern =

2

666666664

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

· · · ·
· · · ·
· · · ·

k(xn�1, x1) k(xn�1, x2) . . . k(xn�1, xn)
k(xn, x1) k(xn, x2) . . . k(xn, xn)

3

777777775

n

n

1.

K̃ = Kern� 1

n
(1 Kern + Kern 1) +

1

n2
1 Kern 1n

n

2.



KERNEL PCA



KERNEL PCA

eigs= ( ,K)3.

" #

, K̃P �n

K



KERNEL PCA

4. = . . .↵ P1p
n�1

PKp
n�K

n

K

n

K

eigs= ( ,K)3.

" #

, K̃P �n

K



KERNEL PCA

4. = . . .↵ P1p
n�1

PKp
n�K

n

K

n

K

eigs= ( ,K)3.

" #

, K̃P �n

K

5. Y = ⇥K̃ ↵n

K

n

K

n

n



Demo



TELL ME WHO YOUR FRIENDS ARE . . .

Cluster nodes in a graph.
Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph



TELL ME WHO YOUR FRIENDS ARE . . .

Cluster nodes in a graph.
Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph



TELL ME WHO YOUR FRIENDS ARE . . .

Cluster nodes in a graph.
Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph



Steps

• Map nodes to K dimensional space 

• Spectral embedding 

• Use clustering on the K dimensional space



What is the Embedding?

• Map each node in V to R   

• Nodes linked to each other are close 

• Disconnected groups of nodes are far from each 
other

K



SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph

n

n

A

Ai,j =

⇢
1 if (i, j) 2 E
0 otherwise



SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph

AL = -D



SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph

AL = -D

Di,i =
nX

j=1

Ai,j



GRAPH CLUSTERING

Fact: For a connected graph, exactly one, the smallest of
eigenvalues is 0, corresponding eigenvector is 1 = (1, . . . ,1)�
Proof: Sum of each row of L is 0 because D

i,i = ∑n

j=1 A

i,j and
L = D −A

1

2 3

4



GRAPH CLUSTERING

Fact: For general graph, number of 0 eigenvalues correspond to
number of connected components. The corresponding
eigenvectors are all 1’s on the nodes of connected components
Proof: L is block diagonal. Use connected graph result on each
component.

1

2 3

4

5 6



GRAPH CLUSTERING

Fact: For general graph, number of 0 eigenvalues correspond to
number of connected components. The corresponding
eigenvectors are all 1’s on the nodes of connected components
Proof: L is block diagonal. Use connected graph result on each
component.

1

2 3

4

5 6



Spectral Embedding

• Nodes linked to each other are close 

• What has this got to do with Laplacian matrix?



CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let c

j

= −1 if x

j

belongs
to cluster 0 and c

j

= 1 if x

j

belongs to cluster 1

CUT = �(i,j)∈E 1
c

i

≠c

j

= 1
2

c

�
Lc

Obj(c) =
1

2

X

(i,j)2E

(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(c
2
i + c2j � 2cicj)

=
1

2

nX

i=1

0

@
nX

j=1

Ai,j

1

A c2i +
1

2

nX

j=1

 
nX

i=1

Ai,j

!
c2j �

nX

i=1

nX

j=1

Ai,jcicj

=
1

2

nX

i=1

Di,ic
2
i +

1

2

nX

j=1

Dj,jc
2
j �

nX

i=1

nX

j=1

Ai,jcicj

= c>Dc� c>Ac = c>Lc



CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let c

j

= −1 if x

j

belongs
to cluster 0 and c

j

= 1 if x

j

belongs to cluster 1

CUT = �(i,j)∈E 1
c

i

≠c

j

= 1
2

c

�
Lc

Obj(c) =
1

2

X

(i,j)2E

(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(c
2
i + c2j � 2cicj)

=
1

2

nX

i=1

0

@
nX

j=1

Ai,j

1

A c2i +
1

2

nX

j=1

 
nX

i=1

Ai,j

!
c2j �

nX

i=1

nX

j=1

Ai,jcicj

=
1

2

nX

i=1

Di,ic
2
i +

1

2

nX

j=1

Dj,jc
2
j �

nX

i=1

nX

j=1

Ai,jcicj

= c>Dc� c>Ac = c>Lc



CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let c

j

= −1 if x

j

belongs
to cluster 0 and c

j

= 1 if x

j

belongs to cluster 1

CUT = �(i,j)∈E 1
c

i

≠c

j

= 1
2

c

�
Lc

Obj(c) =
1

2

X

(i,j)2E

(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(c
2
i + c2j � 2cicj)

=
1

2

nX

i=1

0

@
nX

j=1

Ai,j

1

A c2i +
1

2

nX

j=1

 
nX

i=1

Ai,j

!
c2j �

nX

i=1

nX

j=1

Ai,jcicj

=
1

2

nX

i=1

Di,ic
2
i +

1

2

nX

j=1

Dj,jc
2
j �

nX

i=1

nX

j=1

Ai,jcicj

= c>Dc� c>Ac = c>Lc



CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let c

j

= −1 if x

j

belongs
to cluster 0 and c

j

= 1 if x

j

belongs to cluster 1

CUT = �(i,j)∈E 1
c

i

≠c

j

= 1
2

c

�
Lc

Obj(c) =
1

2

X

(i,j)2E

(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(c
2
i + c2j � 2cicj)

=
1

2

nX

i=1

0

@
nX

j=1

Ai,j

1

A c2i +
1

2

nX

j=1

 
nX

i=1

Ai,j

!
c2j �

nX

i=1

nX

j=1

Ai,jcicj

=
1

2

nX

i=1

Di,ic
2
i +

1

2

nX

j=1

Dj,jc
2
j �

nX

i=1

nX

j=1

Ai,jcicj

= c>Dc� c>Ac = c>Lc



CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let c

j

= −1 if x

j

belongs
to cluster 0 and c

j

= 1 if x

j

belongs to cluster 1

CUT = �(i,j)∈E 1
c

i

≠c

j

= 1
2

c

�
Lc

Obj(c) =
1

2

X

(i,j)2E

(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(c
2
i + c2j � 2cicj)

=
1

2

nX

i=1

0

@
nX

j=1

Ai,j

1

A c2i +
1

2

nX

j=1

 
nX

i=1

Ai,j

!
c2j �

nX

i=1

nX

j=1

Ai,jcicj

=
1

2

nX

i=1

Di,ic
2
i +

1

2

nX

j=1

Dj,jc
2
j �

nX

i=1

nX

j=1

Ai,jcicj

= c>Dc� c>Ac = c>Lc



CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let c

j

= −1 if x

j

belongs
to cluster 0 and c

j

= 1 if x

j

belongs to cluster 1

CUT = �(i,j)∈E 1
c

i

≠c

j

= 1
2

c

�
Lc

Obj(c) =
1

2

X

(i,j)2E

(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(c
2
i + c2j � 2cicj)

=
1

2

nX

i=1

0

@
nX

j=1

Ai,j

1

A c2i +
1

2

nX

j=1

 
nX

i=1

Ai,j

!
c2j �

nX

i=1

nX

j=1

Ai,jcicj

=
1

2

nX

i=1

Di,ic
2
i +

1

2

nX

j=1

Dj,jc
2
j �

nX

i=1

nX

j=1

Ai,jcicj

= c>Dc� c>Ac = c>Lc



SPECTRAL CLUSTERING, K = 2

Hence to find the solution we need to solve for

Minimize c

�
Lc s.t. ∀i ∈ [n], �c

i

� = 1

Since ∀i ∈ [n], �c
i

� = 1, we have �c�2 =√n and so relaxing
(approximating) the optimization:

Minimize c

�
Lc s.t. �c�2 =√n

Hence solution c to above is an Eigen vector, first smallest one is the all
1’s vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0

1

kck = 1



SPECTRAL CLUSTERING, K = 2

Hence to find the solution we need to solve for

Minimize c

�
Lc s.t. ∀i ∈ [n], �c

i

� = 1

Since ∀i ∈ [n], �c
i

� = 1, we have �c�2 =√n and so relaxing
(approximating) the optimization:

Minimize c

�
Lc s.t. �c�2 =√n

Hence solution c to above is an Eigen vector, first smallest one is the all
1’s vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0

1

kck = 1



SPECTRAL CLUSTERING, K > 2

Solution obtained by considering the second smallest up to K

th

smallest eigenvectors
If instead of c

i

= ±1 make for each k ∈ [K], c

k

i

to be indicator of
whether point i belongs to cluster K or not, then

Cut = K�
k=1
(ck)�Lc

k

Proceeding in same fashion as for binary case, we can conclude
that solution to relaxed c

k’s above are the bottom k eigen vectors
Finally to obtain a clustering we use k means on these c

k’s

>1

Obj(c) =
KX

k=1

ck
>
Lck

ck’s are orthogonal to each other and the all ones vector



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn

y1, . . . ,yn are called spectral embedding



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn

y1, . . . ,yn are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors


