Machine Learning for Data Science (CS4786) Lecture 13

Kernel PCA & Spectral Clustering

Course Webpage: http://www.cs.cornell.edu/Courses/cs4786/2017fa/

EXAMPLE

Y

Χ

• Given $\mathbf{x}_t \in \mathbb{R}^d$, the feature space vector is given by mapping

 $\Phi(\mathbf{x}_t) = (\mathbf{x}_t[1], \dots, \mathbf{x}_t[d], \mathbf{x}_t[1] \cdot \mathbf{x}_t[1], \mathbf{x}_t[1] \cdot \mathbf{x}_t[2], \dots, \mathbf{x}_t[d] \cdot \mathbf{x}_t[d], \dots)^{\mathsf{T}}$

• Given $\mathbf{x}_t \in \mathbb{R}^d$, the feature space vector is given by mapping

 $\Phi(\mathbf{x}_t) = (\mathbf{x}_t[1], \dots, \mathbf{x}_t[d], \mathbf{x}_t[1] \cdot \mathbf{x}_t[1], \mathbf{x}_t[1] \cdot \mathbf{x}_t[2], \dots, \mathbf{x}_t[d] \cdot \mathbf{x}_t[d], \dots)^{\mathsf{T}}$

• Enumerating products up to order *K* (ie. products of at most *K* coordinates) we can get degree *K* polynomials.

• Given $\mathbf{x}_t \in \mathbb{R}^d$, the feature space vector is given by mapping

 $\Phi(\mathbf{x}_t) = (\mathbf{x}_t[1], \dots, \mathbf{x}_t[d], \mathbf{x}_t[1] \cdot \mathbf{x}_t[1], \mathbf{x}_t[1] \cdot \mathbf{x}_t[2], \dots, \mathbf{x}_t[d] \cdot \mathbf{x}_t[d], \dots)^{\mathsf{T}}$

- Enumerating products up to order *K* (ie. products of at most *K* coordinates) we can get degree *K* polynomials.
- However dimension blows up as d^{K}

• Given $\mathbf{x}_t \in \mathbb{R}^d$, the feature space vector is given by mapping

 $\Phi(\mathbf{x}_t) = (\mathbf{x}_t[1], \dots, \mathbf{x}_t[d], \mathbf{x}_t[1] \cdot \mathbf{x}_t[1], \mathbf{x}_t[1] \cdot \mathbf{x}_t[2], \dots, \mathbf{x}_t[d] \cdot \mathbf{x}_t[d], \dots)^{\top}$

- Enumerating products up to order *K* (ie. products of at most *K* coordinates) we can get degree *K* polynomials.
- However dimension blows up as d^{K}
- Is there a way to do this without enumerating Φ ?

_

Kernel Trick

- Essence of Kernel trick:
 - If we can write down an algorithm only in terms of $\Phi(\mathbf{x}_t)^{\mathsf{T}} \Phi(\mathbf{x}_s)$ for data points \mathbf{x}_t and \mathbf{x}_s

- Essence of Kernel trick:
 - If we can write down an algorithm only in terms of $\Phi(\mathbf{x}_t)^{\mathsf{T}} \Phi(\mathbf{x}_s)$ for data points \mathbf{x}_t and \mathbf{x}_s
 - Then we don't need to explicitly enumerate Φ(x_t)'s but instead, compute k(x_t, x_s) = Φ(x_t)^TΦ(x_s) (even if Φ maps to infinite dimensional space)

- Essence of Kernel trick:
 - If we can write down an algorithm only in terms of $\Phi(\mathbf{x}_t)^{\mathsf{T}} \Phi(\mathbf{x}_s)$ for data points \mathbf{x}_t and \mathbf{x}_s
 - Then we don't need to explicitly enumerate Φ(x_t)'s but instead, compute k(x_t, x_s) = Φ(x_t)^TΦ(x_s) (even if Φ maps to infinite dimensional space)
- Example: RBF kernel $k(\mathbf{x}_t, \mathbf{x}_s) = \exp(-\sigma \|\mathbf{x}_t \mathbf{x}_s\|_2^2)$, polynomial kernel $k(\mathbf{x}_t, \mathbf{x}_s) = (\mathbf{x}_t^{\mathsf{T}} \mathbf{y}_t)^p$

- Essence of Kernel trick:
 - If we can write down an algorithm only in terms of $\Phi(\mathbf{x}_t)^{\mathsf{T}} \Phi(\mathbf{x}_s)$ for data points \mathbf{x}_t and \mathbf{x}_s
 - Then we don't need to explicitly enumerate $\Phi(\mathbf{x}_t)$'s but instead, compute $k(\mathbf{x}_t, \mathbf{x}_s) = \Phi(\mathbf{x}_t)^{\mathsf{T}} \Phi(\mathbf{x}_s)$ (even if Φ maps to infinite dimensional space)
- Example: RBF kernel $k(\mathbf{x}_t, \mathbf{x}_s) = \exp(-\sigma \|\mathbf{x}_t \mathbf{x}_s\|_2^2)$, polynomial kernel $k(\mathbf{x}_t, \mathbf{x}_s) = (\mathbf{x}_t^{\mathsf{T}} \mathbf{y}_t)^p$
- Kernel function measures similarity between points.

• *k*th column of *W* is eigenvector of covariance matrix

• k^{th} column of *W* is eigenvector of covariance matrix That is, $\lambda_k W_k = \Sigma W_k$. Rewriting, for centered *X*

• k^{th} column of W is eigenvector of covariance matrix That is, $\lambda_k W_k = \Sigma W_k$. Rewriting, for centered X

$$\lambda_k W_k = \frac{1}{n} \left(\sum_{t=1}^n \mathbf{x}_t \mathbf{x}_t^{\mathsf{T}} \right) W_k = \frac{1}{n} \sum_{t=1}^n \left(\mathbf{x}_t^{\mathsf{T}} W_k \right) \mathbf{x}_t$$

• k^{th} column of *W* is eigenvector of covariance matrix That is, $\lambda_k W_k = \Sigma W_k$. Rewriting, for centered *X*

$$\lambda_k W_k = \frac{1}{n} \left(\sum_{t=1}^n \mathbf{x}_t \mathbf{x}_t^{\mathsf{T}} \right) W_k = \frac{1}{n} \sum_{t=1}^n \left(\mathbf{x}_t^{\mathsf{T}} W_k \right) \mathbf{x}_t$$

 W_k 's can be written as linear combination of x_t 's, as

$$W_k = \sum_{t=1}^n \alpha_k [t] \mathbf{x}_t$$

where $\alpha_k[t] = \frac{1}{\lambda_k n} \left(\mathbf{x}_t^{\mathsf{T}} W_k \right)$

• We have that $W_k = \sum_{s=1}^n \alpha_k[s] \mathbf{x}_s$ and that $\alpha_k[t] = \frac{1}{\lambda_k n} (\mathbf{x}_t^\top W_k)$.

•

• We have that $W_k = \sum_{s=1}^n \alpha_k[s] \mathbf{x}_s$ and that $\alpha_k[t] = \frac{1}{\lambda_k n} (\mathbf{x}_t^T W_k)$. • Hence:

•

$$\alpha_k[t] = \frac{1}{\lambda_k n} \left(\mathbf{x}_t^{\mathsf{T}} \left(\sum_{s=1}^n \alpha_k[s] \mathbf{x}_s \right) \right) = \frac{1}{\lambda_k n} \sum_{s=1}^n \alpha_k[s] \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$$

• We have that $W_k = \sum_{s=1}^n \alpha_k[s] \mathbf{x}_s$ and that $\alpha_k[t] = \frac{1}{\lambda_k n} (\mathbf{x}_t^\top W_k)$. • Hence:

$$\alpha_k[t] = \frac{1}{\lambda_k n} \left(\mathbf{x}_t^{\mathsf{T}} \left(\sum_{s=1}^n \alpha_k[s] \mathbf{x}_s \right) \right) = \frac{1}{\lambda_k n} \sum_{s=1}^n \alpha_k[s] \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$$

• Let \tilde{K} be a matrix such that $\tilde{K}_{s,t} = \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$. Hence, $\alpha_k[t] = \frac{1}{\lambda_k n} \alpha_k^{\mathsf{T}} \tilde{K}_t$ and

$$\alpha_k = \frac{1}{\lambda_k n} \tilde{K} \alpha_k$$

where \tilde{K}_t is the t'th column of \tilde{K} .

• We have that $W_k = \sum_{s=1}^n \alpha_k[s] \mathbf{x}_s$ and that $\alpha_k[t] = \frac{1}{\lambda_k n} (\mathbf{x}_t^\top W_k)$. • Hence:

$$\alpha_k[t] = \frac{1}{\lambda_k n} \left(\mathbf{x}_t^{\mathsf{T}} \left(\sum_{s=1}^n \alpha_k[s] \mathbf{x}_s \right) \right) = \frac{1}{\lambda_k n} \sum_{s=1}^n \alpha_k[s] \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$$

• Let \tilde{K} be a matrix such that $\tilde{K}_{s,t} = \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$. Hence, $\alpha_k[t] = \frac{1}{\lambda_k n} \alpha_k^{\mathsf{T}} \tilde{K}_t$ and

$$\alpha_k = \frac{1}{\lambda_k n} \tilde{K} \alpha_k$$

where \tilde{K}_t is the t'th column of \tilde{K} .

• Hence α_k is in the direction of eigen vector of \tilde{K}

• Further, since W_k is unit norm,

$$1 = \|W_k\|_2^2 = \left(\sum_{t=1}^n \boldsymbol{\alpha}_k[t] \mathbf{x}_t\right)^\top \left(\sum_{s=1}^n \boldsymbol{\alpha}_k[s] \mathbf{x}_s\right) = \boldsymbol{\alpha}_k^\top \tilde{K} \boldsymbol{\alpha}_k = n \gamma_k \boldsymbol{\alpha}_k^\top \boldsymbol{\alpha}_k$$

Hence $\|\boldsymbol{\alpha}_k\|^2 = \frac{1}{n\gamma_k}$ where γ_k is the k'th eigen value of matrix \tilde{K}

LETS REWRITE PCA

• However W_k itself is in feature space and has the same dimensionality of $\Phi(x)$ (which is possibly infinite)!

LETS REWRITE PCA

- However W_k itself is in feature space and has the same dimensionality of $\Phi(x)$ (which is possibly infinite)!
- However, the projections are in *K* dimensions and we can hope to directly compute these as:

$$\mathbf{y}_{i}[k] = \mathbf{x}_{i}^{\mathsf{T}} W_{k} = \sum_{t=1}^{n} \boldsymbol{\alpha}_{k}[t] \tilde{K}_{t,i}$$

REWRITTING PCA

• We assumed centered data, what if its not,

$$\begin{split} \tilde{K}_{s,t} &= \left(\mathbf{x}_t - \frac{1}{n} \sum_{u=1}^n \mathbf{x}_u \right) \right)^{\mathsf{T}} \left(\mathbf{x}_s - \frac{1}{n} \sum_{u=1}^n \mathbf{x}_u \right) \\ &= \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s - \left(\frac{1}{n} \sum_{u=1}^n \mathbf{x}_u \right)^{\mathsf{T}} \mathbf{x}_s - \left(\frac{1}{n} \sum_{u=1}^n \mathbf{x}_u \right)^{\mathsf{T}} \mathbf{x}_t \\ &+ \frac{1}{n^2} \left(\sum_{u=1}^n \mathbf{x}_u \right)^{\mathsf{T}} \left(\sum_{v=1}^n \mathbf{x}_v \right) \\ &= \mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s - \frac{1}{n} \sum_{u=1}^n \mathbf{x}_u^{\mathsf{T}} \mathbf{x}_s - \frac{1}{n} \sum_{u=1}^n \mathbf{x}_u^{\mathsf{T}} \mathbf{x}_t + \frac{1}{n^2} \sum_{u=1}^n \sum_{v=1}^n \mathbf{x}_u^{\mathsf{T}} \mathbf{x}_v \end{split}$$

Rewriting PCA

• Equivalently, if Kern is the matrix (Kern_{*t*,s} = $x_t^T x_s$),

$$\tilde{K} = \operatorname{Kern} - \frac{(\mathbf{1}_{n \times n} \times \operatorname{Kern})}{n} - \frac{(\operatorname{Kern} \times \mathbf{1}_{n \times n})}{n} + \frac{(\mathbf{1}_{n \times n} \times \operatorname{Kern} \times \mathbf{1}_{n \times n})}{n^2}$$

• Compute $\tilde{K} = \text{Kern} - \mathbf{1} \text{ Kern}/n - \text{Kern} \mathbf{1}/n + \mathbf{1} \text{ Kern} \mathbf{1}/n^2$

• Compute $\tilde{K} = \text{Kern} - \mathbf{1} \text{ Kern}/n - \text{Kern} \mathbf{1}/n + \mathbf{1} \text{ Kern} \mathbf{1}/n^2$

• Compute top *K* eigen vectors P_1, \ldots, P_K along with eigen values $\gamma_1, \ldots, \gamma_K$ for the matrix \tilde{K}

• Compute $\tilde{K} = \text{Kern} - \mathbf{1} \text{ Kern}/n - \text{Kern} \mathbf{1}/n + \mathbf{1} \text{ Kern} \mathbf{1}/n^2$

- Compute top *K* eigen vectors P_1, \ldots, P_K along with eigen values $\gamma_1, \ldots, \gamma_K$ for the matrix \tilde{K}
- Rescale each P_k by the inverse of the square-root of corresponding eigen values ie. $\alpha_k = P_k / \sqrt{n\gamma_k}$

• Compute $\tilde{K} = \text{Kern} - \mathbf{1} \text{ Kern}/n - \text{Kern} \mathbf{1}/n + \mathbf{1} \text{ Kern} \mathbf{1}/n^2$

- Compute top *K* eigen vectors P_1, \ldots, P_K along with eigen values $\gamma_1, \ldots, \gamma_K$ for the matrix \tilde{K}
- Rescale each P_k by the inverse of the square-root of corresponding eigen values ie. $\alpha_k = P_k / \sqrt{n\gamma_k}$
- Compute projections by setting

$$\mathbf{y}_i[k] = \sum_{t=1}^n \boldsymbol{\alpha}_k[t] \tilde{K}_{t,i}$$

or in other words $Y = \tilde{K} \times [\alpha_1, \ldots, \alpha_K]$

All we need to be able to compute, to perform PCA are $\mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$

All we need to be able to compute, to perform PCA are $\mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$

Replace $\mathbf{x}_t^{\mathsf{T}} \mathbf{x}_s$ with $\Phi(\mathbf{x}_t)^{\mathsf{T}} \Phi(\mathbf{x}_s) = k(x_t, x_s)$ to perform PCA in feature space

2.

$$\tilde{K} = \operatorname{Kern} - \frac{1}{n} \left(\mathbf{1} \operatorname{Kern} + \operatorname{Kern} \mathbf{1} \right) + \frac{1}{n^2} \mathbf{1} \operatorname{Kern} \mathbf{1}$$

Demo

- Cluster nodes in a graph.
- Analysis of social network data.

- Map nodes to K dimensional space
 - Spectral embedding
- Use clustering on the K dimensional space

What is the Embedding?

- Map each node in V to R^K
- Nodes linked to each other are close
- Disconnected groups of nodes are far from each other

$$A_{i,j} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

A is adjacency matrix of a graph

$$D_{i,i} = \sum_{j=1}^{n} A_{i,j}$$

GRAPH CLUSTERING

• Fact: For a connected graph, exactly one, the smallest of eigenvalues is 0, corresponding eigenvector is $\mathbf{1} = (1, ..., 1)^{\mathsf{T}}$ Proof: Sum of each row of *L* is 0 because $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$ and L = D - A

GRAPH CLUSTERING

 Fact: For general graph, number of 0 eigenvalues correspond to number of connected components. The corresponding eigenvectors are all 1's on the nodes of connected components
Proof: *L* is block diagonal. Use connected graph result on each component.

GRAPH CLUSTERING

 Fact: For general graph, number of 0 eigenvalues correspond to number of connected components. The corresponding eigenvectors are all 1's on the nodes of connected components
Proof: *L* is block diagonal. Use connected graph result on each component.

Spectral Embedding

- Nodes linked to each other are close
- What has this got to do with Laplacian matrix?

$$Obj(c) = \frac{1}{2} \sum_{(i,j)\in E} (c_i - c_j)^2$$

$$Obj(c) = \frac{1}{2} \sum_{(i,j)\in E} (c_i - c_j)^2$$
$$= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (c_i - c_j)^2$$

$$Obj(c) = \frac{1}{2} \sum_{(i,j)\in E} (c_i - c_j)^2$$
$$= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (c_i - c_j)^2$$
$$= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (c_i^2 + c_j^2 - 2c_i c_j)^2$$

$$\begin{aligned} \operatorname{Obj}(c) &= \frac{1}{2} \sum_{(i,j)\in E} (c_i - c_j)^2 \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (c_i - c_j)^2 \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (c_i^2 + c_j^2 - 2c_i c_j) \\ &= \frac{1}{2} \sum_{i=1}^n \left(\sum_{j=1}^n A_{i,j} \right) c_i^2 + \frac{1}{2} \sum_{j=1}^n \left(\sum_{i=1}^n A_{i,j} \right) c_j^2 - \sum_{i=1}^n \sum_{j=1}^n A_{i,j} c_i c_j \end{aligned}$$

$$\begin{aligned} \operatorname{Obj}(c) &= \frac{1}{2} \sum_{(i,j)\in E} (c_i - c_j)^2 \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (c_i - c_j)^2 \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (c_i^2 + c_j^2 - 2c_i c_j) \\ &= \frac{1}{2} \sum_{i=1}^n \left(\sum_{j=1}^n A_{i,j} \right) c_i^2 + \frac{1}{2} \sum_{j=1}^n \left(\sum_{i=1}^n A_{i,j} \right) c_j^2 - \sum_{i=1}^n \sum_{j=1}^n A_{i,j} c_i c_j \\ &= \frac{1}{2} \sum_{i=1}^n D_{i,i} c_i^2 + \frac{1}{2} \sum_{j=1}^n D_{j,j} c_j^2 - \sum_{i=1}^n \sum_{j=1}^n A_{i,j} c_i c_j \end{aligned}$$

$$\begin{aligned} \operatorname{Obj}(c) &= \frac{1}{2} \sum_{(i,j) \in E} (c_i - c_j)^2 \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (c_i - c_j)^2 \\ &= \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n A_{i,j} (c_i^2 + c_j^2 - 2c_i c_j) \\ &= \frac{1}{2} \sum_{i=1}^n \left(\sum_{j=1}^n A_{i,j} \right) c_i^2 + \frac{1}{2} \sum_{j=1}^n \left(\sum_{i=1}^n A_{i,j} \right) c_j^2 - \sum_{i=1}^n \sum_{j=1}^n A_{i,j} c_i c_j \\ &= \frac{1}{2} \sum_{i=1}^n D_{i,i} c_i^2 + \frac{1}{2} \sum_{j=1}^n D_{j,j} c_j^2 - \sum_{i=1}^n \sum_{j=1}^n A_{i,j} c_i c_j \\ &= c^\top D c - c^\top A c = c^\top L c \end{aligned}$$

SPECTRAL CLUSTERING, K = 1

Hence to find the solution we need to solve for

Minimize $c^{\mathsf{T}}Lc$ s.t. ||c|| = 1

SPECTRAL CLUSTERING, K = 1

Hence to find the solution we need to solve for

Minimize $c^{\mathsf{T}}Lc$ s.t. ||c|| = 1

Hence solution *c* to above is an Eigen vector, first smallest one is the all 1's vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0

SPECTRAL CLUSTERING, K >1

 Solution obtained by considering the second smallest up to Kth smallest eigenvectors

$$\operatorname{Obj}(c) = \sum_{k=1}^{K} c^{k^{\top}} L c^{k}$$

 c^k 's are orthogonal to each other and the all ones vector

Spectral Clustering Algorithm (Unnormalized)

- Given matrix *A* calculate diagonal matrix *D* s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- 2 Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of *L* (ascending order of eigenvalues)
- ④ Pick the *K* eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^K$
- **5** Use K-means clustering algorithm on y_1, \ldots, y_n

Spectral Clustering Algorithm (Unnormalized)

- Given matrix *A* calculate diagonal matrix *D* s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- 2 Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of *L* (ascending order of eigenvalues)
- ④ Pick the *K* eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^K$
- **5** Use K-means clustering algorithm on y_1, \ldots, y_n

 $\mathbf{y}_1, \ldots, \mathbf{y}_n$ are called spectral embedding

Spectral Clustering Algorithm (Unnormalized)

- Given matrix *A* calculate diagonal matrix *D* s.t. $D_{i,i} = \sum_{j=1}^{n} A_{i,j}$
- 2 Calculate the Laplacian matrix L = D A
- 3 Find eigen vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ of *L* (ascending order of eigenvalues)
- ④ Pick the *K* eigenvectors with smallest eigenvalues to get $\mathbf{y}_1, \ldots, \mathbf{y}_n \in \mathbb{R}^K$
- **5** Use K-means clustering algorithm on y_1, \ldots, y_n

 $\mathbf{y}_1, \ldots, \mathbf{y}_n$ are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors