Machine Learning for Data Science (CS4786)

Lecture 13

Kernel PCA & Spectral Clustering
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o Given x; € R?, the feature space vector is given by mapping

@ Enumerating products up to order K (ie. products of at most K
coordinates) we can get degree K polynomials.

e However dimension blows up as d*

@ Is there a way to do this without enumerating @7
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KERNEL TRICK

@ Essence of Kernel trick:

o If we can write down an algorithm only in terms of O (x;)' ©(x;)
for data points x; and x;

o Then we don’t need to explicitly enumerate @ (x;)’s but instead,
compute k(x;, xs) = O(x;) ' @(xs) (even if ® maps to infinite
dimensional space)

e Example: RBF kernel k(x;, x;) = exp(—0|x; — X H%), polynomial
kernel k(x;, xs) = (x;yt)p

@ Kernel function measures similarity between points.
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LETS REWRITE PCA

o k™ column of W is eigenvector of covariance matrix
That is, Ay W) = ZWj. Rewriting, for centered X

1 [ 1
?\ka = E (Z XtXtT) Wk = E Z (X;Wk)xt
t=1 t=1

W’s can be written as linear combination of x;’s, as

where oy [t] = = (x] W)

~ Aen
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@ Hence:
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@ Let K be a matrix such that f(s,t = x, X;. Hence, o [t] = ALkn o, K; and
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where K; is the t'th column of K.



LETS REWRITE PCA

o We have that W, = ", oy [s]xs and that o [t] = (x] Wi).

7\k7”l
@ Hence:

o [ ] e (xt(z(xk )) ?\1 zn:(xk[s]xths

kN s=1

@ Let K be a matrix such that f(s,t = x, X;. Hence, o [t] = ALkn o, K; and

1
K
X = 7\k1”l X
where K; is the t'th column of K.

o Hence oy is in the direction of eigen vector of K



LETS REWRITE PCA

@ Further, since W, is unit norm,

n T/ n
1= W3 - (Sl (2 oulshe ) - Row =y
t=1 s=1

| = L where v; is the k’th eigen value of matrix K

Hence | o v
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LETS REWRITE PCA

@ However W itself is in feature space and has the same
dimensionality of @ (x) (which is possibly infinite)!

@ However, the projections are in K dimensions and we can hope to
directly compute these as:

yilk] = x] Wi =" o [t]K; ;
=1



REWRITTING PCA

@ We assumed centered data, what if its not,

1 n T 1 n
ol B (e 20
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REWRITING PCA

e Equivalently, if Kern is the matrix (Kern; s = x; x;),

% - Kern — (1%, x Kern) B (Kern x 1,,x,) . (Lnxn x Kern x 1,55, )

n n n2
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PCA REWRITTEN

o Compute K = Kern — 1 Kern/n — Kern 1/n + 1 Kern 1/n?

@ Compute top K eigen vectors Py, .. ., Px along with eigen values
Y1, ---, vk for the matrix K

@ Rescale each Py by the inverse of the square-root of corresponding
eigen values ie. oy = Pi/ /1Yy

e Compute projections by setting
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KERNEL PCA

All we need to be able to compute, to perform PCA are x; x;

Replace x; x; with @ (x;)'®(x;) = k(x¢, x5) to perform PCA
in feature space
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1 1
= Kern — — (1 Kern + Kern 1) + —1 Kern 1
n n
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SPECTRAL CLUSTERING

@ Cluster nodes in a graph.

@ Analysis of social network data.



Steps

* Map nodes to K dimensional space
* Spectral embedding

* Use clustering on the K dimensional space



What is the Embedding?

* Map each node inV to R"
* Nodes linked to each other are close

* Disconnected groups of nodes are far from each
other



SPECTRAL CLUSTERING

Ai’j:{ 1 if(i,j) e E

0 otherwise

n

A is adjacency matrix of a graph
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GRAPH CLUSTERING

@ Fact: For a connected graph, exactly one, the smallest of
eigenvalues is 0, corresponding eigenvectoris 1 = (1,.. ., 1)'

Proof: Sum of each row of L is 0 because D; ; = 2}11 A;jand
L=D-A
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@ Fact: For general graph, number of 0 eigenvalues correspond to
number of connected components. The corresponding
eigenvectors are all 1’s on the nodes of connected components

Proof: L is block diagonal. Use connected graph result on each
component.



Spectral Embedding

e Nodes linked to each other are close

* What has this got to do with Laplacian matrix”
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SPECTRAL CLUSTERING, K =1
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SPECTRAL CLUSTERING, K =1

Hence to find the solution we need to solve for

Minimize ¢"Le s.t. ||| =1

Hence solution ¢ to above is an Eigen vector, first smallest one is the all
1’s vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0



SPECTRAL CLUSTERING, K >1

e Solution obtained by considering the second smallest up to K"
smallest eigenvectors

K
Obj(c Z

c™’s are orthogonal to each other and the all ones vector



SPECTRAL CLUSTERING ALGORITHM

(UNNORMALIZED)

@ Given matrix A calculate diagonal matrix D s.t. D; ; = 2;7:1 Ajj

@ C(alculate the Laplacian matrix L=D - A
@ Find eigen vectors vy, .. ., v,, of L (ascending order of eigenvalues)

© Pick the K eigenvectors with smallest eigenvalues to get
K
Yi,-.-, Yn e R

@ Use K-means clustering algorithm on yq, . . ., Vn
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SPECTRAL CLUSTERING ALGORITHM

(UNNORMALIZED)

@ Given matrix A calculate diagonal matrix D s.t. D; ; = 2;7:1 Ajj

@ C(alculate the Laplacian matrix L=D - A
@ Find eigen vectors vy, .. ., v,, of L (ascending order of eigenvalues)

© Pick the K eigenvectors with smallest eigenvalues to get
K
Yi,-.-, Yn e R

@ Use K-means clustering algorithm on yy, . . ., Vi
yi,...,¥Yn are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors



