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A FIRST CUT
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Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?
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KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x
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)’s but instead,
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) (even if � maps to infinite
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�p
Kernel function measures similarity between points.
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LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�
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xtx
�
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�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�
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LETS REWRITE PCA

However W

k

itself is in feature space and has the same
dimensionality of �(x) (which is possibly infinite)!
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directly compute these as:

y

i

[k] = x

�
i

W

k

= n�
t=1

↵
k

[t]K̃
t,i



LETS REWRITE PCA

However W

k

itself is in feature space and has the same
dimensionality of �(x) (which is possibly infinite)!
However, the projections are in K dimensions and we can hope to
directly compute these as:

y

i

[k] = x

�
i

W

k

= n�
t=1

↵
k

[t]K̃
t,i



REWRITTING PCA
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REWRITING PCA

Equivalently, if Kern is the matrix (Kern
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PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
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↵
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[t]K̃
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or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2
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KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t
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with �(x
t

)��(x
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) = k(x
t

,x
s

) to perform PCA
in feature space
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KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1
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v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!
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TELL ME WHO YOUR FRIENDS ARE . . .

Cluster nodes in a graph.
Analysis of social network data.

SPECTRAL CLUSTERING

Input: Similarity matrix A

A

i,j = A

j,i > 0 indicates similarity between elements x

i

and x

j

Example: A

i,j = exp(−�d(x
i

,x
j

))
A is adjacency matrix of a graph
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Steps

• Map nodes to K dimensional space 

• Spectral embedding 

• Use clustering on the K dimensional space



What is the Embedding?

• Map each node in V to R   

• Nodes linked to each other are close 

• Disconnected groups of nodes are far from each 
other

K
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Ai,j =

⇢
1 if (i, j) 2 E
0 otherwise
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GRAPH CLUSTERING

Fact: For a connected graph, exactly one, the smallest of
eigenvalues is 0, corresponding eigenvector is 1 = (1, . . . ,1)�
Proof: Sum of each row of L is 0 because D

i,i = ∑n

j=1 A

i,j and
L = D −A

1

2 3

4



GRAPH CLUSTERING

Fact: For general graph, number of 0 eigenvalues correspond to
number of connected components. The corresponding
eigenvectors are all 1’s on the nodes of connected components
Proof: L is block diagonal. Use connected graph result on each
component.

1

2 3
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Spectral Embedding

• Nodes linked to each other are close 

• What has this got to do with Laplacian matrix?



CUTS AND LAPLACIAN

Consider case when we have/want 2 clusters. Let c

j

= −1 if x

j

belongs
to cluster 0 and c

j

= 1 if x

j

belongs to cluster 1

CUT = �(i,j)∈E 1
c

i

≠c

j

= 1
2

c

�
Lc

Obj(c) =
1

2

X

(i,j)2E

(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(ci � cj)
2

=
1

2

nX

i=1

nX

j=1

Ai,j(c
2
i + c2j � 2cicj)

=
1

2

nX

i=1

0

@
nX

j=1

Ai,j

1

A c2i +
1

2

nX

j=1

 
nX

i=1

Ai,j

!
c2j �

nX

i=1

nX

j=1

Ai,jcicj

=
1

2

nX

i=1

Di,ic
2
i +

1

2

nX

j=1

Dj,jc
2
j �

nX

i=1

nX

j=1

Ai,jcicj

= c>Dc� c>Ac = c>Lc
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SPECTRAL CLUSTERING, K = 2

Hence to find the solution we need to solve for

Minimize c

�
Lc s.t. ∀i ∈ [n], �c

i

� = 1

Since ∀i ∈ [n], �c
i

� = 1, we have �c�2 =√n and so relaxing
(approximating) the optimization:

Minimize c

�
Lc s.t. �c�2 =√n

Hence solution c to above is an Eigen vector, first smallest one is the all
1’s vector (for connected graph), second smallest one is our solution

To get clustering assignment we simply threshold at 0

1

kck = 1
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SPECTRAL CLUSTERING, K > 2

Solution obtained by considering the second smallest up to K

th

smallest eigenvectors
If instead of c

i

= ±1 make for each k ∈ [K], c

k

i

to be indicator of
whether point i belongs to cluster K or not, then

Cut = K�
k=1
(ck)�Lc

k

Proceeding in same fashion as for binary case, we can conclude
that solution to relaxed c

k’s above are the bottom k eigen vectors
Finally to obtain a clustering we use k means on these c

k’s

>1

Obj(c) =
KX

k=1

ck
>
Lck

ck’s are orthogonal to each other and the all ones vector



SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn
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SPECTRAL CLUSTERING ALGORITHM
(UNNORMALIZED)

1 Given matrix A calculate diagonal matrix D s.t. D

i,i = ∑n

j=1 A

i,j

2 Calculate the Laplacian matrix L = D −A

3 Find eigen vectors v1, . . . ,vn

of L (ascending order of eigenvalues)

4 Pick the K eigenvectors with smallest eigenvalues to get
y1, . . . ,yn

∈ RK

5 Use K-means clustering algorithm on y1, . . . ,yn

y1, . . . ,yn are called spectral embedding

Embeds the n nodes into K-1 dimensional vectors


