
Machine Learning for Data Science (CS4786)
Lecture 12

Canonical Correlation Analysis & Kernel PCA

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2017fa/

How do we get the right
direction? (say K = 1)

+
Age

Gender

Angle

WHICH DIRECTION TO PICK?

View I View II

WHICH DIRECTION TO PICK?

0 0

PCA direction

WHICH DIRECTION TO PICK?

Direction has large covariance

How do we pick the right direction to project to?

MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,

1
n

n�
t=1
�yt[1] − 1

n

n�
t=1

yt[1]� ⋅ �y ′t[1] − 1
n

n�
t=1

y

′
t[1]�

s.t. 1
n ∑n

t=1 �yt[1] − 1
n ∑n

t=1 yt[1]�2 = 1
n ∑n

t=1 �y ′t[1] − 1
n ∑n

t=1 y

′
t[1]� = 1

where yt[1] =w

�
1 xt and y

′
t[1] = v

�
1 x

′
t

What is the problem
with the above?

WHY NOT MAXIMIZE COVARIANCE

Say
1

n

nX

t=1

xt[2] · x0
t[2] > 0

Scaling up this coordinate we can blow up covariance

WHY NOT MAXIMIZE COVARIANCE

Say
1

n

nX

t=1

xt[2] · x0
t[2] > 0

Scaling up this coordinate we can blow up covariance

WHY NOT MAXIMIZE COVARIANCE

Relevant information

Say
1

n

nX

t=1

xt[2] · x0
t[2] > 0

Scaling up this coordinate we can blow up covariance

MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,

1
n ∑n

t=1 �yt[1] − 1
n ∑n

t=1 yt[1]� ⋅ �y ′t[1] − 1
n ∑n

t=1 y

′
t[1]��

1
n ∑n

t=1 �yt[1] − 1
n ∑n

t=1 yt[1]�2� 1
n ∑n

t=1 �y ′t[1] − 1
n ∑n

t=1 y

′
t[1]�

BASIC IDEA OF CCA

Normalize variance in chosen direction to be constant (say 1)

Then maximize covariance

This is same as maximizing “correlation coefficient” (recall from
last class).

COVARIANCE VS CORRELATION

Covariance(A,B) = E[(A −E[A]) ⋅ (B −E[B])]
Depends on the scale of A and B. If B is rescaled, covariance shifts.

Corelation(A,B) = E[(A−E[A])⋅(B−E[B])]�
Var(A)�Var(B)

Scale free.

MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,

1
n

n�
t=1
�yt[1] − 1

n

n�
t=1

yt[1]� ⋅ �y ′t[1] − 1
n

n�
t=1

y

′
t[1]�

s.t. 1
n ∑n

t=1 �yt[1] − 1
n ∑n

t=1 yt[1]�2 = 1
n ∑n

t=1 �y ′t[1] − 1
n ∑n

t=1 y

′
t[1]� = 1

where yt[1] =w

�
1 xt and y

′
t[1] = v

�
1 x

′
t

MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,

1
n

n�
t=1
�yt[1] − 1

n

n�
t=1

yt[1]� ⋅ �y ′t[1] − 1
n

n�
t=1

y

′
t[1]�

s.t. 1
n ∑n

t=1 �yt[1] − 1
n ∑n

t=1 yt[1]�2 = 1
n ∑n

t=1 �y ′t[1] − 1
n ∑n

t=1 y

′
t[1]� = 1

where yt[1] =w

�
1 xt and y

′
t[1] = v

�
1 x

′
t

CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that

maximize
1
n

n�
t=1

w

�
1(xt − µ) ⋅ v�1(x ′t − µ ′)

subject to
1
n

n�
t=1
(w�1(xt − µ))2 = 1

n

n�
t=1
(v�1(x ′t − µ ′))2 = 1

where µ = 1
n ∑n

t=1 xt and µ ′ = 1
n ∑n

t=1 x

′
t

CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that

maximize w

�
1⌃1,2v1

subject to w

�
1⌃1,1w1 = v

�
1⌃2,2v1 = 1

Writing Lagrangian taking derivative equating to 0 we get

⌃1,2⌃
−1
2,2⌃2,1w1 = �2⌃1,1w1 and ⌃2,1⌃

−1
1,1⌃1,2v1 = �2⌃2,2v1

or equivalently

�⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1�w1 = �2

w1 and �⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2�v1 = �2

v1

CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that

maximize w

�
1⌃1,2v1

subject to w

�
1⌃1,1w1 = v

�
1⌃2,2v1 = 1

Writing Lagrangian taking derivative equating to 0 we get

⌃1,2⌃
−1
2,2⌃2,1w1 = �2⌃1,1w1 and ⌃2,1⌃

−1
1,1⌃1,2v1 = �2⌃2,2v1

or equivalently

�⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1�w1 = �2

w1 and �⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2�v1 = �2

v1
⌃ =cov X

 !
⌃

⌃⌃
⌃11

21

12

22
= X

0

SOLUTION

SOLUTION

eigs= ,K()W1
⌃�1

11 ⌃12⌃
�1
22 ⌃21

eigs= ,K()W2
⌃�1

22 ⌃21⌃
�1
11 ⌃12

CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points

⌃ = � ⌃1,1 ⌃1,2
⌃2,1 ⌃2,2

�

Calculate ⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1. The top K eigen vectors of this matrix

give us projection matrix for view I.

Calculate ⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2. The top K eigen vectors of this matrix

give us projection matrix for view II.

CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points

⌃ = � ⌃1,1 ⌃1,2
⌃2,1 ⌃2,2

�

Calculate ⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1. The top K eigen vectors of this matrix

give us projection matrix for view I.

Calculate ⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2. The top K eigen vectors of this matrix

give us projection matrix for view II.

,

n

d1 d2

X = X1 X2

 !

1.

CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points

⌃ = � ⌃1,1 ⌃1,2
⌃2,1 ⌃2,2

�

Calculate ⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1. The top K eigen vectors of this matrix

give us projection matrix for view I.

Calculate ⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2. The top K eigen vectors of this matrix

give us projection matrix for view II.

,

n

d1 d2

X = X1 X2

 !

1.

⌃ =cov X
 !

2.
⌃

⌃⌃
⌃11

21

12

22
=

CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points

⌃ = � ⌃1,1 ⌃1,2
⌃2,1 ⌃2,2

�

Calculate ⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1. The top K eigen vectors of this matrix

give us projection matrix for view I.

Calculate ⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2. The top K eigen vectors of this matrix

give us projection matrix for view II.

,

n

d1 d2

X = X1 X2

 !

1.

⌃ =cov X
 !

2.
⌃

⌃⌃
⌃11

21

12

22
=

eigs= ,K()3. W1 ⌃�1
11 ⌃12⌃

�1
22 ⌃21

CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points

⌃ = � ⌃1,1 ⌃1,2
⌃2,1 ⌃2,2

�

Calculate ⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1. The top K eigen vectors of this matrix

give us projection matrix for view I.

Calculate ⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2. The top K eigen vectors of this matrix

give us projection matrix for view II.

,

n

d1 d2

X = X1 X2

 !

1.

⌃ =cov X
 !

2.
⌃

⌃⌃
⌃11

21

12

22
=

eigs= ,K()3. W1 ⌃�1
11 ⌃12⌃

�1
22 ⌃21

4. Y = W⇥X�µ
11 1 1

CCA DEMO

i can't believe how awful is this movie i was expecting it to be
really good especially with the actors that were in the cast this is
depressing i'm so bummed that they ruined such a good plot

bummed to see such a bad game what an awful performance
by everyone on the team as if everyone played to loose need to
improve hitters more but fielders were also worse today one of
the worst performance in the history of baseball

oh man this war movie was just too depressing for me some
scenes were simply awful even though the plot closely follows
the novel which i've read i was bummed at the end and had to
secretly go cry

i will tell you what is wrong with it it is dead that's what is wrong with it i had just
about enough of this that team is definitely deceased tired and shagged out
after a long game you say look matey not a single soul in that lineup would to hit
a single ball even if i put 4000-volts through them they are bleeding demised
they are not pitching they passed on period plus pretty sure they must smell of
awful elderberries after that game you should be depressed like me share the
negativity please

this was so hilarious that's the best movie i've seen in a while i
didn't know this actor before but he is so funny i was laughing
from start to finish

it was hilarious to see playing these kids against experts
throughout the game they were just running here and there
and trying to get to the ball which they couldn't even once this
was funny for viewers but organizers should ensure that
inexperienced teams don't play against the experienced ones
to keep the game interesting

dude that movie was so funny right i was laughing in like fits
during some of the scenes i know the plot is supposed to be
thought-provoking but i found it hilarious i really should stop
laughing all the time but who cares right

now what seems to be the problem he says after leaning on the
coach's limb body after a fast pitch struck him during the game
his face was icy serious not laughing at all unlike everyone else
jen said 'it is the coach he is not moving at all is he dead he
said slowly course not we answered laughing again thank god

well that was a funny movie i enjoyed the plot with all those
twists you never knew what was going to happen especially in
this last scene i wasn't expecting this outcome at all haha

was it a game at all i felt as if everyone was just trying to stay warm
by making as little move as possible laziness of fielders was
making it appear as if they were running in 0.5x speed mode haha
strikers made good use of pitch they got and it was an easy win

lol i can't even sit properly now i have a tummy ache because of
all the rofling that actor's head looked like a volcano haha i swear
it looked like it was about to erupt and his brains would spill out
haha

fans at the game are encouraged to get out of their seats stretch
a bit and sing take me out to the ball game that is the closest
baseball gets to a halftime haha

really love that movie we saw yesterday i was really excited
since i knew it was going to be released this week and i haven't
been disappointed at all i especially enjoyed the acting of the
actors they were so good

what an awesome game it was dwight evans set the path to
unprecedented victory when he made his very first strike on the
pitch he alone made the whole game enjoyable excited for the
next match

omg i totally loved yesterday's movie we were all so excited to
finally catch the third movie after months of scouring the fan
pages for the plot there are mixed opinions on the acting but i
think the actors did a brilliant job overall

80 years old and was still playing the game stuff like this
keeps you excited motivated you know yes he did break his
back walking to the pitch to take the strike but you know
everyone has to expire and go to their maker at some point he
was lucky to do it while doing something he loved i am sure
he enjoyed every second of it we should learn to enjoy this
game too like him and reflect that on our strikes

Kernel PCA
(non-linear projections)

LINEAR PROJECTIONS

LINEAR PROJECTIONS

X

d

n

LINEAR PROJECTIONS

X

d

n Yn

K

LINEAR PROJECTIONS

X

d

n Yn

K

K

Wd =⇥

LINEAR PROJECTIONS

X

d

n Yn

K

K

Wd =⇥

Works when data lies in a low dimensional linear sub-space

EXAMPLE

Y

X

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

LINEAR PROJECTIONS (RIGHT CO-ORDINATES)

Demo

A FIRST CUT

Given x

t

∈ Rd, the feature space vector is given by mapping

�(x
t

) = (x
t

[1], . . . ,x
t

[d],x
t

[1] ⋅ x
t

[1],x
t

[1] ⋅ x
t

[2], . . . ,x
t

[d] ⋅ x
t

[d], . . .)�

Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?

A FIRST CUT

Given x

t

∈ Rd, the feature space vector is given by mapping

�(x
t

) = (x
t

[1], . . . ,x
t

[d],x
t

[1] ⋅ x
t

[1],x
t

[1] ⋅ x
t

[2], . . . ,x
t

[d] ⋅ x
t

[d], . . .)�

Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?

A FIRST CUT

Given x

t

∈ Rd, the feature space vector is given by mapping

�(x
t

) = (x
t

[1], . . . ,x
t

[d],x
t

[1] ⋅ x
t

[1],x
t

[1] ⋅ x
t

[2], . . . ,x
t

[d] ⋅ x
t

[d], . . .)�

Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?

A FIRST CUT

Given x

t

∈ Rd, the feature space vector is given by mapping

�(x
t

) = (x
t

[1], . . . ,x
t

[d],x
t

[1] ⋅ x
t

[1],x
t

[1] ⋅ x
t

[2], . . . ,x
t

[d] ⋅ x
t

[d], . . .)�

Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?

KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.

KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.

KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.

KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.

KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x

t

)��(x
s

)
for data points x

t

and x

s

Then we don’t need to explicitly enumerate �(x
t

)’s but instead,
compute k(x

t

,x
s

) =�(x
t

)��(x
s

) (even if � maps to infinite
dimensional space)

Example: RBF kernel k(x
t

,x
s

) = exp(−��x
t

− x

s

�22), polynomial
kernel k(x

t

,x
s

) = �x�
t

y

t

�p
Kernel function measures similarity between points.

KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!

KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!

Kern =

2

666666664

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

· · · ·
· · · ·
· · · ·

k(xn�1, x1) k(xn�1, x2) . . . k(xn�1, xn)
k(xn, x1) k(xn, x2) . . . k(xn, xn)

3

777777775

n

n

1.

KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!

Kern =

2

666666664

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

· · · ·
· · · ·
· · · ·

k(xn�1, x1) k(xn�1, x2) . . . k(xn�1, xn)
k(xn, x1) k(xn, x2) . . . k(xn, xn)

3

777777775

n

n

1.

K̃ = Kern� 1

n
(1 Kern + Kern 1) +

1

n2
1 Kern 1n

n

2.

KERNEL PCA

KERNEL PCA

eigs= (,K)3.

" #

, K̃P �n

K

KERNEL PCA

4. = . . .↵ P1p
n�1

PKp
n�K

n

K

n

K

eigs= (,K)3.

" #

, K̃P �n

K

KERNEL PCA

4. = . . .↵ P1p
n�1

PKp
n�K

n

K

n

K

eigs= (,K)3.

" #

, K̃P �n

K

5. Y = ⇥K̃ ↵n

K

n

K

n

n

LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�

LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�

LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�

LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
n
� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�

LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:

↵
k

[t] = 1
�

k

n

�x�
t

� n�
s=1

↵
k

[s]x
s

�� = 1
�

k

n

n�
s=1

↵
k

[s]x�
t

x

s

Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃

LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:

↵
k

[t] = 1
�

k

n

�x�
t

� n�
s=1

↵
k

[s]x
s

�� = 1
�

k

n

n�
s=1

↵
k

[s]x�
t

x

s

Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃

LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:

↵
k

[t] = 1
�

k

n

�x�
t

� n�
s=1

↵
k

[s]x
s

�� = 1
�

k

n

n�
s=1

↵
k

[s]x�
t

x

s

Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃

LETS REWRITE PCA

We have that W

k

= ∑n

s=1 ↵k

[s]x
s

and that ↵
k

[t] = 1
�

k

n

�
x

�
t

W

k

�.
Hence:

↵
k

[t] = 1
�

k

n

�x�
t

� n�
s=1

↵
k

[s]x
s

�� = 1
�

k

n

n�
s=1

↵
k

[s]x�
t

x

s

Let K̃ be a matrix such that K̃

s,t = x

�
t

x

s

. Hence, ↵
k

[t] = 1
�

k

n

↵�
k

K̃

t

and

↵
k

= 1
�

k

n

K̃↵
k

where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃

LETS REWRITE PCA

Further, since W

k

is unit norm,

1 = �W
k

�22 = � n�
t=1

↵
k

[t]x
t

�� � n�
s=1

↵
k

[s]x
s

� = ↵
k

�
K̃↵

k

= n�
k

↵
k

�↵
k

Hence �↵
k

�2 = 1
n�

k

where �
k

is the k’th eigen value of matrix K̃

LETS REWRITE PCA

However W

k

itself is in feature space and has the same
dimensionality of �(x) (which is possibly infinite)!
However, the projections are in K dimensions and we can hope to
directly compute these as:

y

i

[k] = x

�
i

W

k

= n�
t=1

↵
k

[t]K̃
t,i

LETS REWRITE PCA

However W

k

itself is in feature space and has the same
dimensionality of �(x) (which is possibly infinite)!
However, the projections are in K dimensions and we can hope to
directly compute these as:

y

i

[k] = x

�
i

W

k

= n�
t=1

↵
k

[t]K̃
t,i

REWRITTING PCA

We assumed centered data, what if its not,

K̃

s,t = �xt

− 1
n

n�
u=1

x

u

)�� �x
s

− 1
n

n�
u=1

x

u

�
= x

�
t

x

s

− �1
n

n�
u=1

x

u

�� x

s

− �1
n

n�
u=1

x

u

�� x

t

+ 1
n

2 �
n�

u=1
x

u

�� � n�
v=1

x

v

�
= x

�
t

x

s

− 1
n

n�
u=1

x

�
u

x

s

− 1
n

n�
u=1

x

�
u

x

t

+ 1
n

2

n�
u=1

n�
v=1

x

�
u

x

v

REWRITING PCA

Equivalently, if Kern is the matrix (Kern
t,s = x

�
t

x

s

),

K̃ = Kern − (1n×n

×Kern)
n

− (Kern × 1

n×n

)
n

+ (1n×n

×Kern × 1

n×n

)
n

2

PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2

PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2

PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2

PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2

KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space

KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space

KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space

KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!

KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!

Kern =

2

666666664

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

· · · ·
· · · ·
· · · ·

k(xn�1, x1) k(xn�1, x2) . . . k(xn�1, xn)
k(xn, x1) k(xn, x2) . . . k(xn, xn)

3

777777775

n

n

1.

KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!

Kern =

2

666666664

k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

· · · ·
· · · ·
· · · ·

k(xn�1, x1) k(xn�1, x2) . . . k(xn�1, xn)
k(xn, x1) k(xn, x2) . . . k(xn, xn)

3

777777775

n

n

1.

K̃ = Kern� 1

n
(1 Kern + Kern 1) +

1

n2
1 Kern 1n

n

2.

KERNEL PCA

KERNEL PCA

eigs= (,K)3.

" #

, K̃P �n

K

KERNEL PCA

4. = . . .↵ P1p
n�1

PKp
n�K

n

K

n

K

eigs= (,K)3.

" #

, K̃P �n

K

KERNEL PCA

4. = . . .↵ P1p
n�1

PKp
n�K

n

K

n

K

eigs= (,K)3.

" #

, K̃P �n

K

5. Y = ⇥K̃ ↵n

K

n

K

n

n

Demo

