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THE TALL, THE FAT AND the Ugly

d and n so large we can’t even store in memory
Only have time to be linear in size(X) = n × d

I there any hope?
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WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Consider any vector x̃ ∈ Rd and let ỹ =W�
x̃. Note that

ỹ[j]2 = ��
d�

i=1
W[i, j] ⋅ x̃[i]��

2

=�
i,i ′
(W[i, j] ⋅ x̃[i]) ⋅ �W[i ′, j] ⋅ x̃[i ′]�

=�
i,i ′
�W[i, j] ⋅W[i ′, j]� ⋅ �x̃[i] ⋅ x̃[i ′]�



RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2



RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2



RANDOM PROJECTION

What does “it works” even mean?

Distances between all pairs of data-points in low dim. projection
is roughly the same as their distances in the high dim. space.

That is, when K is “large enough”, with “high probability”, for all
pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2



WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!
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ỹ
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ỹ
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ỹ
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Hence,

E�ỹ2� = d�
i=1

x̃

2[i] +�
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E�W[i,1] ⋅W[i ′,1]� ⋅ �x̃[i] ⋅ x̃[i ′]�
However W[i,1] and W[i ′,1] are independent and so

E�W[i,1] ⋅W[i ′,1]� = E[W[i,1]] ⋅E�W[i ′,1]� = 0

Using this we conclude that
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E��ỹ�2� = �x̃�22
If we let x̃ = xs − xt then
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Hence for any s, t ∈ {1, . . . ,n},
E��ys − yt�2� = �xs − xt�22

Lets try this in Matlab . . .
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E��ỹ�2� = �x̃�22
If we let x̃ = xs − xt then
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WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

Setting K large is like getting K samples.
Specifically since we take W to be random signs normalized by√

K, for each j ∈ [K], for any x̃ if ỹ = x̃ W, then

E�ỹ2[j]� = �x̃�22 �K
Hence we can conclude that

E
������

K�
j=1

ỹ

2[j]������ =
K�

j=1
E�ỹ2[j]� = K�

j=1

�x̃�22
K
= �x̃�22

This is like taking an average of K independent measurements
whose expectations are �x̃�22
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ỹ

2[j]������ =
K�

j=1
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WHY SHOULD RANDOM PROJECTIONS EVEN WORK?!

For large K, not only true in expectation but also with high probability

For any ✏ > 0, if K ≈ log (n��) �✏2, with probability 1 − � over draw of
W, for all pairs of data points i, j ∈ {1, . . . ,n},

(1 − ✏) �yi − yj�2 ≤ �xi − xj�2 ≤ (1 + ✏) �yi − yj�2

Lets try on Matlab . . .

This is called the Johnson-Lindenstrauss lemma or JL lemma for short.
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n= 
1000

d = 1000000

If we take K = 69.1/✏2, with probability

0.99 distances are preserved to accuracy ✏



TWO VIEW DIMENSIONALITY REDUCTION

Data comes in pairs (x1,x
′
1), . . . , (xn,x ′n)where xt’s are d

dimensional and x

′
t ’s are d ′ dimensional

Goal: Compress say view one into y1, . . . ,yn, that are K
dimensional vectors

Retain information redundant between the two views

Eliminate “noise” specific to only one of the views



Canonical Correlation 
Analysis

x

y
z



Canonical Correlation 
Analysis

x

y
z

+
Age

Gender

Angle



Canonical Correlation 
Analysis

x

y
z

+
Age

Gender

Angle



EXAMPLE I: SPEECH RECOGNITION

Audio might have background sounds uncorrelated with video

Video might have lighting changes uncorrelated with audio

Redundant information between two views: the speech

+



EXAMPLE II: COMBINING FEATURE EXTRACTIONS

Method A and Method B are both equally good feature extraction
techniques

Concatenating the two features blindly yields large dimensional
feature vector with redundancy

Applying techniques like CCA extracts the key information
between the two methods

Removes extra unwanted information



How do we get the right 
direction? (say K = 1) 

+
Age

Gender

Angle
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WHICH DIRECTION TO PICK?

0 0

PCA direction



WHICH DIRECTION TO PICK?

Direction has large covariance



How do we pick the right direction to project to?



MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,

1
n

n�
t=1
�yt[1] − 1

n

n�
t=1

yt[1]� ⋅ �y ′t[1] − 1
n

n�
t=1

y

′
t[1]�

s.t. 1
n ∑n

t=1 �yt[1] − 1
n ∑n

t=1 yt[1]�2 = 1
n ∑n

t=1 �y ′t[1] − 1
n ∑n

t=1 y

′
t[1]� = 1

where yt[1] =w

�
1 xt and y

′
t[1] = v

�
1 x

′
t



What is the problem 
with the above?



WHY NOT MAXIMIZE COVARIANCE

Say
1

n

nX

t=1

xt[2] · x0
t[2] > 0

Scaling up this coordinate we can blow up covariance
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WHY NOT MAXIMIZE COVARIANCE

Relevant  information

Say
1

n

nX

t=1

xt[2] · x0
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Scaling up this coordinate we can blow up covariance



MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,

1
n ∑n

t=1 �yt[1] − 1
n ∑n

t=1 yt[1]� ⋅ �y ′t[1] − 1
n ∑n

t=1 y

′
t[1]��

1
n ∑n

t=1 �yt[1] − 1
n ∑n

t=1 yt[1]�2� 1
n ∑n

t=1 �y ′t[1] − 1
n ∑n

t=1 y

′
t[1]�



BASIC IDEA OF CCA

Normalize variance in chosen direction to be constant (say 1)

Then maximize covariance

This is same as maximizing “correlation coefficient” (recall from
last class).



COVARIANCE VS CORRELATION

Covariance(A,B) = E[(A −E[A]) ⋅ (B −E[B])]
Depends on the scale of A and B. If B is rescaled, covariance shifts.

Corelation(A,B) = E[(A−E[A])⋅(B−E[B])]�
Var(A)�Var(B)

Scale free.
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CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that

maximize
1
n

n�
t=1

w

�
1(xt − µ) ⋅ v�1(x ′t − µ ′)

subject to
1
n

n�
t=1
(w�1(xt − µ))2 = 1

n

n�
t=1
(v�1(x ′t − µ ′))2 = 1

where µ = 1
n ∑n

t=1 xt and µ ′ = 1
n ∑n

t=1 x

′
t



CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that

maximize w

�
1⌃1,2v1

subject to w

�
1⌃1,1w1 = v

�
1⌃2,2v1 = 1

Writing Lagrangian taking derivative equating to 0 we get

⌃1,2⌃
−1
2,2⌃2,1w1 = �2⌃1,1w1 and ⌃2,1⌃

−1
1,1⌃1,2v1 = �2⌃2,2v1

or equivalently

�⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1�w1 = �2

w1 and �⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2�v1 = �2

v1
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 !
⌃

⌃⌃
⌃11

21

12

22
= X
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SOLUTION



SOLUTION

eigs= ,K( )W1
⌃�1

11 ⌃12⌃
�1
22 ⌃21

eigs= ,K( )W2
⌃�1

22 ⌃21⌃
�1
11 ⌃12



CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points

⌃ = � ⌃1,1 ⌃1,2
⌃2,1 ⌃2,2

�

Calculate ⌃−1
1,1⌃1,2⌃

−1
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